Metallic Bonding

Metallic Bonding

A short one to finish off my first ever mini-series on bonding – ionic, covalent and finally metallic. There are metallic and metallic compounds and elements but for the A Level exam, we must look at the bonding within metals themselves. Don’t worry – I saved the easiest to last!

Metals are most usually solid so have particles packed close together. These are in layers which mean that the outer electrons can move between them rather than being bound to particular atoms. These are referred to as delocalised electrons because of this.

It’s pretty common knowledge that metals are good conductors of heat and electricity and it’s these delocalised electrons that give them this property.

Metals are therefore without their electrons so become positive ions. The metallic bond is actually the attraction between delocalised electrons and positive metal ions in the lattice. And that’s pretty much metallic bonding, you just need to know the properties of metals which are touched upon at lower levels of education.

image

These are the properties of metals:

1.       High melting points

Metals have large regular structures with strong forces between the oppositely charged positive ions and negative electrons, meaning these must be overcome to melt the metal – this requires a large amount of heat energy. Transition metals tend to have higher melting points than the main group metals because they have large numbers of d-shell electrons which can become delocalised creating a stronger metallic bond. Melting points across a period increase because they can have progressively more delocalised electrons: Na+, Mg 2+ and Al 3+ for example.

2.       Heat conductivity

Heat is conducted if particles can move and knock against each other to pass it on. Delocalised electrons allow this to happen.  Silver is a particularly good conductor of heat.

3.       Electrical conductivity

Delocalised electrons can carry charge and move, the two requirements of electrical conductivity. Current can flow because of these delocalised electrons.

4.       Ductile and malleable

Metals can be stretched and hammered into shape, making them ideal for things such as wires. Layered lattices mean that layers can slide over each other without disrupting the bonding – it is all still held together by the delocalised electrons and their strong attraction to the positive metal ions.

image

5.       High densities

Being a solid, metal ions are packed closely together so they have a high density, which makes them ideal for musical instrument strings. These can withstand the frequency of vibration whilst also being thinner.

image

 SUMMARY

Metals are  solid so have particles packed close together. These are in layers which mean that the outer electrons can move between them rather than being bound to particular atoms. These are referred to as delocalised electrons because of this.

Metals are therefore without their electrons so become positive ions. The metallic bond is actually the attraction between delocalised electrons and positive metal ions in the lattice. 

Metals have high melting points.

Metals have large regular structures with strong forces between the oppositely charged positive ions and negative electrons, meaning these must be overcome to melt the metal – this requires a large amount of heat energy. Transition metals tend to have higher melting points than the main group metals because they have large numbers of d-shell electrons which can become delocalised creating a stronger metallic bond. 

Metals conduct heat.

Heat is conducted if particles can move and knock against each other to pass it on. Delocalised electrons allow this to happen.

Metals have good electrical conductivity

Delocalised electrons can carry charge and move, the two requirements of electrical conductivity. Current can flow because of these delocalised electrons.

Metals are ductile and malleable.

Metals can be stretched and hammered into shape, making them ideal for things such as wires. Layered lattices mean that layers can slide over each other without disrupting the bonding – it is all still held together by the delocalised electrons and their strong attraction to the positive metal ions.

Being a solid, metal ions are packed closely together so they have a high density. 

 Happy studying!

More Posts from Amateurchemstudent and Others

4 years ago
Follow @productive-tips For More Tips And Content Like This Posted Daily! Handpicked And Curated With

Follow @productive-tips for more tips and content like this posted daily! Handpicked and curated with love :)


Tags
4 years ago
It’s #NationalCabbageDay! Cabbages Aren’t Just Good For Eating – You Can Make A Colourful PH Indicator

It’s #NationalCabbageDay! Cabbages aren’t just good for eating – you can make a colourful pH indicator from them, too 🧪 https://ift.tt/39JT2ro https://ift.tt/2LXZWTq


Tags
4 years ago

Enthalpy - a thermodynamic property

When I first learned about enthalpy, I was shocked - it felt more like a physics lesson than a chemistry lesson. The thought of learning more about thermodynamics than my basic understanding from my many science lessons in lower school made me bored out of my mind. But enthalpy is actually pretty interesting, once you get your head around it…

Reactions which release heat to their surroundings are described to be exothermic. These are reactions like combustion reactions, oxidation reactions and neutralisation reactions. Endothermic reactions take in heat from their surroundings, such as in thermal decomposition. Reversible reactions are endothermic in one direction and exothermic in the other.

These facts are important when you start to look at enthalpy. Enthalpy is basically a thermodynamic property linked to internal energy, represented by a capital H. This is pretty much the energy released in bond breaking and made in bond making. We usually measure a change in enthalpy, represented by ∆H.  ∆H = enthalpy of the products (H1) - enthalpy of the reactants (H2). This is because we cannot measure enthalpy directly.

In exothermic reactions,  ∆H is negative whereas in endothermic reactions,  ∆H is positive.

∆H is always measured under standard conditions of 298K and 100kPa. 

In reversible reactions, the ∆H value is the same numerical value forwards and backwards but the sign is reversed. For example, in a forward exothermic reaction, the  ∆H value would be -ve but in the backwards reaction (endothermic) the  ∆H would be +ve. 

Reaction profiles are diagrams of enthalpy levels of reactants and products in a chemical reaction. X axis is enthalpy rather than ∆H and the Y axis is the progress of reaction, reaction coordinate or extent of reaction. Two horizontal lines show the enthalpy of reactants and products with the reactants on the left and the products on the right. These should be labelled with their names or formulae. 

In an endothermic reaction, product lines are higher enthalpy values than reactants. In an exothermic reaction, product lines are lower enthalpy values than reactants. The difference between product and reactant lines is labelled as  ∆H. Values are measured in kJ mol-1. 

Reaction pathways are shown with lines from the reactants to the products on enthalpy level diagrams. This shows the “journey” that the enthalpy takes during a reaction. They require an input of energy to break bonds before new bonds can form the products. The activation energy is the peak of the pathway above the enthalpy of reactants. It is the minimum amount of energy that reactants must have to react. 

image

Standard enthalpy values are the ∆H values for enthalpy changes of specific reactions measured under standard conditions, represented by ⊖. There are three of these:

1. Standard enthalpy of reaction ( ΔHr⊖ )

The enthalpy change when substances react under standard conditions in quantities given by the equation for the reaction.

2. Standard enthalpy of formation ( ΔfH⊖ )

The enthalpy change when 1 mole of a compound is formed from its constitutent elements with all reactants and products in standard states under standard conditions.

The enthalpy of formation for an element is zero is it is in it’s standard state for example, O2 enthalpy is zero.

3. Standard enthalpy of combustion ( ΔcH⊖ )

The enthalpy change when 1 mole of a substance is burned completely in excess oxygen with all reactants and products in their standard states under standard conditions.

Values for standard enthalpy of formation and combustion must be kept to per mole of what they refer.

Summary

Reactions which release heat to their surroundings are described to be exothermic. Endothermic reactions take in heat from their surroundings, such as in thermal decomposition. 

Reversible reactions are endothermic in one direction and exothermic in the other.

Enthalpy is a thermodynamic property linked to internal energy, represented by a capital H. We usually measure a change in enthalpy, represented by ∆H. 

 ∆H = enthalpy of the products (H1) - enthalpy of the reactants (H2). We cannot measure enthalpy directly.

In exothermic reactions,  ∆H is negative whereas in endothermic reactions,  ∆H is positive.

∆H is always measured under standard conditions of 298K and 100kPa. 

In reversible reactions, the ∆H value is the same numerical value forwards and backwards but the sign is reversed. 

Reaction profiles are diagrams of enthalpy levels of reactants and products in a chemical reaction. They 

In an endothermic reaction, product lines are higher enthalpy values than reactants. In an exothermic reaction, product lines are lower enthalpy values than reactants.

 The difference between product and reactant lines is labelled as  ∆H. 

Values are measured in kJ mol-1.

Reaction pathways are shown with lines from the reactants to the products on enthalpy level diagrams. They plot enthalpy against reaction progress.

Reactions require an input of energy to break bonds before new bonds can form the products. The activation energy is the peak of the pathway above the enthalpy of reactants. It is the minimum amount of energy that reactants must have to react.

Standard enthalpy values are the ∆H values for enthalpy changes of specific reactions measured under standard conditions, represented by ⊖. 

Standard enthalpy of reaction ( ΔHr⊖ ) is the enthalpy change when substances react under standard conditions in quantities given by the equation for the reaction.

Standard enthalpy of formation ( ΔfH⊖ ) is the enthalpy change when 1 mole of a compound is formed from its constitutent elements with all reactants and products in standard states under standard conditions.

The enthalpy of formation for an element is zero is it is in it’s standard state.

Standard enthalpy of combustion ( ΔcH⊖ ) is the enthalpy change when 1 mole of a substance is burned completely in excess oxygen with all reactants and products in their standard states under standard conditions.

Values for standard enthalpy of formation and combustion must be kept to per mole of what they refer.

Happy studying!


Tags
4 years ago
The Latest Edition Of #PeriodicGraphics In C&EN Looks At Some Fruits And Vegetables Which We Might Not

The latest edition of #PeriodicGraphics in C&EN looks at some fruits and vegetables which we might not consider dangerous, but which can, in some cases, contain unwelcome natural toxins: https://ift.tt/3fNzwOE https://ift.tt/2K60CoM


Tags
4 years ago

Structural Isomerism

In one boring history lesson, you and your friend (who both love chemistry) are doodling displayed formulas in the back of your textbook. You both decide to draw C5H12 - however, when you come to name what you’ve drawn, your friend has something completely different. You know what you’ve drawn is pentane and your friend knows what they’ve drawn is 2,3-dimethylpropane. So which one is C5H12?

The answer is both! What you and your friend have hypothetically drawn are structural isomers of C5H12 (another is 2-methylbutane). These are compounds which have the same molecular formula but different structural formulas.

Isomers are two or more compounds with the same formula but a different arrangement of atoms in the molecule and often different properties. 

There are several different kinds of structural isomers: chain, positional and functional group. 

Structural Isomerism

Chain isomerism happens when there is more than one way of arranging carbon atoms in the longest chain. If we continue with the example C5H12, it exists as the three chain isomers shown above. Chain isomers have similar chemical properties but different physical properties because more branched isomers have weaker Van der Waals and therefore lower boiling points.

Positional isomers have the same carbon chain and the same functional group but it is attached at different points along the chain. 

Structural Isomerism

This is a halogenoalkane. The locant “1″ describes where the chlorine is on the chain. For more on naming organic compounds, check out my nomenclature post.

The final type of isomer you need to know is a functional group isomer. This is a compound with the same molecular formula but a different functional group. For example, C2H6O could be ethanol or methoxymethane.

Structural Isomerism

And surprisingly, that is all you need to know for the AS exam. There are also things called stereoisomers but those will be covered next year. Just make sure you know how to name and draw the three different kinds of structural isomers for the exam. Practice makes perfect!

SUMMARY

Structural isomers are compounds which have the same molecular formula but different structural formulas.

Isomers are two or more compounds with the same formula but a different arrangement of atoms in the molecule and often different properties.

There are several different kinds of structural isomers: chain, positional and functional group.

Chain isomerism happens when there is more than one way of arranging carbon atoms in the longest chain. Chain isomers have similar chemical properties but different physical properties because more branched isomers have weaker Van der Waals and therefore lower boiling points.

Positional isomers have the same carbon chain and the same functional group but it is attached at different points along the chain.

A functional group isomer is a compound with the same molecular formula but a different functional group.

Happy studying!


Tags
4 years ago

What comes to mind when you think of alcohol? Probably alcoholic drinks like beer or wine. But in organic chemistry alcohols are an important and versatile family of compounds. In this episode of Crash Course Organic Chemistry, we’ll use alcohols as a starting point to get other types of compounds like ethers, epoxides, and more!


Tags
4 years ago

If you are scrolling through Tumblr trying to distract yourself from something you don’t want to think about, or you’re looking for a sign. It is going to be okay. Just breathe. You are alive and you matter. 

4 years ago

Biochemistry

Update: Pictures are working!

Atoms

There are a few basic chemistry concepts that are essential to understand. For starters, understanding what an atom is and its basic properties.

Atoms are the building block of all matter. They have a positive nucleus, with positive protons, and neutral neutrons. In a large area surrounding the nucleus, is the electron cloud, made of negatively charged electrons.

An atom in its elemental state is always neutral.

When an element has a charge, it is because it has an unequal number of protons an electrons, making it an ion. Sometimes an element’s nucleus has an unequal number of neutrons and protons, making it an isotope. Carbon-14, for example, has 8 neutrons, instead of the 6 that Carbon-12 has. Carbon-14 is also a radioisotope, meaning it emits particles and decays at a rate called a half-life, making it useful for fossil dating. Along with that, radioactive carbon can be used as a tracer. This means it is incorporated in CO2 molecules and used to track metabolic pathways.

The location of the electron affects how the atom will react with other elements. When electrons are in the lowest available energy level, they are in the ground state. When they absorb energy, they move to a higher energy level, entering the excited state. For instance, when chlorophyll absorbs light energy, electrons within it are boosted to higher energy levels. This provides the energy necessary to produce sugar when they return to their ground state level as they release the energy they absorbed.

Bonding

Elements bond when two nuclei are attracted to each other. Energy is released when a bond is formed. All atoms want to either get rid of all their electrons on their outer shell or fill their outer shell with 8 (or in hydrogen’s case, 2) electrons, which makes them stable. There are 3 kinds of bonds, but for biochemistry, Ionic and covalent bonds are what is relevant.

Ionic bonds form ions (hence the name.) They occur when electrons are transferred. The atom that gains electrons becomes a negatively charged anion. The atom that loses electrons becomes a positively charged cation.

Covalent bonds are made when electrons are shared. This occurs when the two atoms have electronegativities that are closer together than in an ionic bond. Electronegativity is the tendency of an atom to pull electrons towards it. These bonds can be polar if the electronegativity is high enough. A polar molecule is a molecule with a partial charge. For example, water is a polar molecule, as oxygen is extremely electronegative, and water is partially electronegative.

Biochemistry

Hydrogen Bonding

Hydrogen bonding is a specific kind of intermolecular force that is essential to life. It is what keeps the 2 strands of DNA bonded together, and gives water its unique characteristics. Since oxygen has a partial negative charge, and hydrogen has a partial positive charge, they are naturally drawn to each other.

Biochemistry

Hydrophobic vs Hydrophilic

Polar molecules are hydrophilic. This is because they are attracted to the partially charged ends of water. Hydrophilic means they are attracted to water. (Not in that way… sick) NaCl or table salt is hydrophilic. This is why salt dissolves in water.

Non-polar molecules are hydrophobic. This means they are repelled by water. (They’re filthy water haters.) Lipids are hydrophobic, which is why fats and oils do not dissolve in water.

The cell membrane is a phospholipid bilayer, only allowing nonpolar substances to dissolve through it. Large polar molecules have to use specific hydrophilic channels.

Characteristics of Water

Water is a unique molecule, and without its unique properties, life on earth would not exist as it does, or even at all.

Water has a high specific heat: Because hydrogen bonds are so strong, it requires a lot of heat energy to break them. This is why large bodies of water remain the same temperature, and why coastal cities have a consistent temperature because the water absorbs all the heat energy before it can warm up.

Water has a high heat of vaporisation: A large amount of energy is needed for water to vaporise, which is why sweating is such an effective cooling method.

Water has high adhesion properties: Adhesion is when one substance clings to another. Adhesion causes capillary action, which occurs in the xylem of plants, and is used to bring water up from the roots without expending energy.

Water is a universal solvent: Due to its high polarity, water makes an excellent solvent.

Water is extremely cohesive: Molecules of water tend to stick to each other. This is observed in surface tension and allows for small insects to run across the surface of the water. Cohesion is also necessary to bring water up from the roots, by transpirational-pull cohesion tension.

Ice is less dense than water: Instead of freezing all the way through, ice crystallises, leaving large amounts of space, causing ice to float. This is essential for the survival of marine life during the winter, as they can live beneath the ice.

pH

pH is calculated by taking the -log of the chance of finding hydronium (H30+) ions within a certain amount of water. Hydronium is made in rare circumstances, where a hydrogen ion breaks off from a water molecule. Normally, there is a 1 in 10 million chance of there being a hydronium ion. This is the equivalent of 1x10^-7. The -log of this number is 7, the neutral pH.

Any pH below 7 is acidic. Any pH above 7 is basic. Stomach acid has a pH of 2, while bleach has a pH of 11. Human blood has a pH of around 7.4

Most living cells need to have an internal environment with a pH of around 7. Buffers exist to regulate pH by either absorbing excess hydrogen ions or donating missing hydrogen ions. In human blood, the bicarbonate ion (HCO3) is essential.

Macromolecules

There are 4 types of macromolecules: carbohydrates, lipids, proteins, and nucleic acids.

Carbohydrates

Carbohydrates are made of carbon, hydrogen, and oxygen. They supply quick and easy energy. 1 gram of all carbohydrates will release 4 calories of energy. In our diet, they can be found almost everywhere in foods such as rice, pasta, bread, cookies, etc.

There are 3 kinds of carbohydrates: monosaccharides, disaccharides, and polysaccharides.

Monosaccharides

All monosaccharides have a chemical formula of C6H12O6. It is the placement of the carbon, oxygen, and hydrogen that determines its properties. Glucose, fructose, and galactose are all examples. They are isomers, meaning they have the same chemical formula, but a different structure.

Biochemistry

Disaccharides

When 2 monosaccharides join together, they create disaccharides. They all have the chemical formula C12H22O11. Dehydration synthesis is the process that creates them. This process releases 1 molecule of water, hence the name. Lactose, maltose, and sucrose are all examples.

Hydrolysis is the exact opposite of dehydration synthesis. It is used during digestion. One molecule of water is used to breakdown polymers into monomers.

Polysaccharides Polysaccharides are long polymers of carbohydrates. Cellulose (plant cell wall), chitin (exoskeleton, fungi cell wall), glycogen (how animals store carbohydrates) and starch (how plants store carbohydrates) are all examples.

Lipids

Lipids include fats, oils, and waxes. Most contain 1 glycerol and 3 fatty acids. Glycerol is alcohol.

Biochemistry

Fatty acids are the building blocks of lipids and are hydrocarbon chains with carboxyl groups at the end. There are 2 varieties; saturated and unsaturated. (3 if you count trans-fats when extra hydrogen is added to the fat to make the lipid solid)

Saturated fats are solid at room temperature, and are famously unhealthy as they are linked to heart disease.

Unsaturated fats are liquid at room temperature and are good dietary fats.

Biochemistry

Lipids store much more energy than carbohydrates. 1 gram of any lipid will release 9 calories of heat per gram. They can be structural, as in the phospholipids of the cell membrane, or they can be hormones.

Proteins

Proteins are polymers of amino acids linked together by peptide bonds.

Amino acids are identifiable by their carboxyl group, amine group, and variable R, attached to a central carbon atom.

Proteins are complex and perform a vast array of duties, such as growth and repair, being enzymes, membrane channels, and hormones.

1 gram of protein releases 4 calories of heat.

Proteins contain the elements C H O N P S

There are only 20 amino acids coding for the thousands of proteins in the human body.

Protein Structure

There are 4 levels to the structure of a protein.

The primary structure results from the sequence of amino acids making up the polypeptide

The secondary structure results from hydrogen bonding within the molecule. This causes a helical structure

The tertiary structure is an intricate 3-dimensional shape or conformation of a protein and most directly decides the function of the protein. Enzymes denature in high temperatures or in the wrong pH because the tertiary structure is compromised.

The quaternary structure is only found in proteins that have more than 1 polypeptide chain, such as in haemoglobin.

Biochemistry

Enzymes

Enzymes are large proteins

Enzymes lower the energy of activation, speeding up the reaction, as it lowers the amount of energy needed to start the reaction.

The chemical an enzyme works on is known as a substrate

Enzymes are specifically designed for specific substrates. For example, lactase only works on lactose. Notice the naming pattern for enzymes and their substrates.

The induced fit model is an explanation for how they work. When the substrate enters the active site, it induces the enzyme to change its shape to fit the substrate.

Enzymes can be reused as they do not degrade during a reaction

Enzymes are assisted by cofactors (minerals) or coenzymes (vitamins)

Biochemistry
Biochemistry
Biochemistry

Prions

Prions are proteins that cause diseases. Mad cow disease is an example. It is a misformed protein able to influence other proteins to fold in the same way.

Nucleic Acids

There are 2 kinds of nucleic acids: RNA and DNA. They are necessary for carrying genetic information.

Nucleic acids are polymers of nucleotides

The nucleotides are the two purines: Adenine and Guanine, and the 3 pyrimidines, Thymine, Uracil, and Cytosine. Uracil is only found in RNA, and thymine is only found in DNA. Adenine connects with thymine/uracil, and guanine connects with cytosine.

Biochemistry

Tags
4 years ago
Today Is #InternationalMakeUpDay! Here’s A Graphic Looking At The Various Components Of Nail Polish

Today is #InternationalMakeUpDay! Here’s a graphic looking at the various components of nail polish 💅 https://ift.tt/32fnwAh https://ift.tt/3jWclTk

Loading...
End of content
No more pages to load
  • number1nerd
    number1nerd reblogged this · 3 years ago
  • amateurchemstudent
    amateurchemstudent reblogged this · 4 years ago
  • amateurchemstudent
    amateurchemstudent liked this · 4 years ago
  • myprofoundkingbouquet
    myprofoundkingbouquet liked this · 4 years ago
  • soo-tae
    soo-tae liked this · 4 years ago
  • awesomemilkshakepieblr
    awesomemilkshakepieblr liked this · 4 years ago
  • freakingferret
    freakingferret liked this · 5 years ago
  • skighz
    skighz liked this · 5 years ago
  • harukihatsune
    harukihatsune reblogged this · 5 years ago
  • harukihatsune
    harukihatsune liked this · 5 years ago
  • khadooy8
    khadooy8 reblogged this · 5 years ago
  • jade12358
    jade12358 liked this · 6 years ago
  • bioqueen
    bioqueen liked this · 6 years ago
  • the-holistic-stuff
    the-holistic-stuff liked this · 6 years ago
  • chocogrades
    chocogrades reblogged this · 6 years ago
  • dolce-jasmine-blog
    dolce-jasmine-blog liked this · 6 years ago
  • ghostyczernyy
    ghostyczernyy liked this · 6 years ago
  • forapenny-forapound
    forapenny-forapound reblogged this · 6 years ago
  • forapenny-forapound
    forapenny-forapound liked this · 6 years ago
  • super-space-time
    super-space-time liked this · 6 years ago
  • thefuturelawyer
    thefuturelawyer liked this · 6 years ago
  • societysprintedsmiles
    societysprintedsmiles liked this · 6 years ago
  • superblytinyghost
    superblytinyghost liked this · 7 years ago
  • lovegeorgeee
    lovegeorgeee liked this · 7 years ago
  • nothingbesidepizza
    nothingbesidepizza liked this · 7 years ago
  • b4ngchanlover
    b4ngchanlover liked this · 7 years ago
  • poorarthoes
    poorarthoes reblogged this · 7 years ago
  • blueberry-pancakes-stuff
    blueberry-pancakes-stuff liked this · 7 years ago
  • as-studypeach
    as-studypeach reblogged this · 7 years ago
  • chemstudyign
    chemstudyign liked this · 7 years ago
  • thecookiethoughts
    thecookiethoughts reblogged this · 7 years ago
  • thecookiethoughts
    thecookiethoughts liked this · 7 years ago
  • bookantique
    bookantique liked this · 7 years ago
  • k2study
    k2study reblogged this · 7 years ago
  • obsessxdmuch
    obsessxdmuch liked this · 7 years ago
  • mamisgxrl-blog
    mamisgxrl-blog liked this · 7 years ago
  • asimayofficial
    asimayofficial liked this · 7 years ago
  • rizeraven
    rizeraven reblogged this · 7 years ago
  • saveourmindsblog
    saveourmindsblog liked this · 7 years ago
  • future-geneius-study
    future-geneius-study liked this · 7 years ago
  • llevotuvozenmivoz-meow
    llevotuvozenmivoz-meow reblogged this · 7 years ago

51 posts

Explore Tumblr Blog
Search Through Tumblr Tags