Experience Tumblr Like Never Before
Just need to rest for a while......The ice is not that bad
So this is a short sci-fi story i wrote 2 to 3 years ago. I'm still learning, so please give me whatever constructive criticism you can.
I'll also be posting a few more of my stories while I'm currently working on that one lesbian bug alien romance story I posted about before.
Synopsis: A Blackbox from a group of Voyagers’ is recovered after their starship is found destroyed. It reveals that refueling off of the water from Jupiter’s moon Europa may not be the best idea.
“AY-005 to command.” the terminal crackled and the image of Lt. Pallin faded into view through the static. “One moment Pallin. Gotta clean up your image.” I replied into the microphone as I twisted the dials that lined the terminal. Slowly Lt. Pallin’s face became more clear and her voice lost some of the accompanying grain. “Alright go ahead.” I was eager to hear her report, usually being on night shift I rarely get any first hand contact. It's all told to me by the previous shifts or in emailed memorandums, this was a welcome surprise. “Right,” Lt. Pallin began “We found the black box that belonged to AX-004.” My heart leaped in my chest. This was astounding news, AX-004 had been destroyed a few months ago, and we only found out thanks to some routine telescopic searching. “That's fantastic news, Pallin. Send it in.” The loud clicking of my key-board nearly drowned out my instructions as I prepared the terminal to receive the blackbox’s contents. “Copy.” she replied and moved just off screen. I went and made myself a fresh pot of coffee as the data was being transferred, my shoes sticking and making awful squelches as I walked. They really need to clean this place.
I made my way back and sat down with a new mug of coffee steaming, the pot set next to me. The terminal’s processor revved and the fan spun, working hard to complete the download. Finally the green bar with a ninety-nine percent hovering over finally filled and presented “DOWNLOAD COMPLETE” and Lt. Pallin’s face returned. “I’ll review this right away. Thanks Lieutenant. Be careful.” I praised, and I readied myself for a long night. Her chuckle was distorted as the feed gained more interference. Before she cut out I heard her say “All G— will con— need to refuel. Planning— Europa’s ocean.” Then she was gone. Honestly, I was surprised her communication had lasted as long as it did. These terminals may have been the latest and greatest in light-year communication, but even they have their limits. I queued up the file, only an audio log accompanied by descriptive text of the ship's onboard computer system. Sadly the AX series of ships were just old enough to not be equipped with cameras but were equipped with auditory receptors allowing the crew to use voice commands. That way they needn’t travel to a ship terminal just to adjust the temperature or run diagnostics. I grabbed myself a snack from my desk, my notepad, and settled in.
<SCS> 00:30 running diagnostics. Fuel low. Reserve error. Waking Captain…
(Capt. Love): Computer, what’s happening?
(SCS): Request not recognized.
(Capt. Love): God dammit. Computer run diagnostic.
(SCS): One moment. Diagnostic report: Engines- fine, shields-fine, landing gear- fine, life support- fine, Fuel - Low, Fuel Reserve - Error
(Capt. Love): So it's a fuel problem. Alright, damn. Computer, scan for possible fuel sources, enough to complete the mission.
(SCS): One moment.
<SCS> Scanning…
(SCS): Large source of H2O found. 325 miles from current position. Location: Europa.
(Capt. Love): Huh, okay. Computer wake crew.
(SCS): One moment.
<SCS> Waking crew…
(Cpl. Benings): Awww, come on. What now?
(Pvt. Dell): What's going on? Are we here?
(Dr. Ve): Well that was a nice nap.
(SCS): Captain, crew have been awakened.
(Capt. Love): All hands to the bridge.
(Cpl. Bennings) What’s going on Captain?
(Capt. Love): Low on fuel and the reserve is malfunctioning. I found us a good refueling point, at least enough to finish the mission. Europa.
(Cpl. Bennings): Alright so we just fly down and grab some water, easy. I’ll go check out the reverve, see what's up. Though why’d you wake up these two?
(Pvt. Dell): Yeah I was gonna ask the same thing. I'm no engineer.
(Capt. Love): Good experience for you Dell and I figured the Doc wouldn't want to miss landing on a moon made of ocean.
(Dr. Ve.): Thank you.
(Capt. Love): Computer chart course for Europa
(SCS): One moment.
<SCS> Charting course. Ideal landing zone found. Engaging Autopilot. Engaging engines…
<SCS> 01:20 Deploying landing gear. Intciating landing…
(SCS): Please be advised. The temperature on Europa is currently -260℉ or -160℃. Thermal suits are recommended.
(Cpl. Bennings): No shit sherlock. Oww, sorry.
(Capt. Love): Alright, Everyone ready?
(Cpt. Bennings): Yep.
(Pvt. Dell): Yes Sir.
(Dr. Ve): Almost. Okay.
<SCS> All crew members have left the ship. Switching to remote communications.
(Cpl. Bennings): Holy shit, I thought my mother in-law was cold.
(Capt. Love): Imagine it without the thermal suits. Now Dell, bring that over here. Alright This is literally the definition of plug and chug. We insert the drill, it drills the ice, sucks it up and puts it in the reserve. Then when we reach the water below the surface, that will fill up our main tank.
(Dr. Ve): Would you look at those geysers? Amazing.
(Capt. Love): Hey Doc don't go too far, the surface is very unstable from the shifting currents.
(Dr. Ve): Oh right. Sorry.
(SCS): All members be advised. Large life-form detected. Proceed with caution.
(Pvt. Dell): What?
(Capt. Love): Computer, elaborate.
(SCS): Sure. Lifeform location 85 miles below the surface. Lifeform appears to be 360
feet in length. Weight estimated to be 467 tons. Creature’s thermal signature indicates it is an endotherm.
(Cpl Bennings): What the fuck? Really? First alien life we encounter and this type of shit. Great.
(Capt. Love): Hold it together Bennings. Computer, track lifeform. Warn us if it's within 2.75 miles of the surface. Dell get the Doctor back to the ship, I'll finish here.
<SCS> Lifeform movement 63 miles from surface. Fuel 54% complete.
(Pvt. Dell): Watch your step Doctor.
<SCS> 2 of 4 crew members on board. Lifeform movement 34 miles from the surface. Fuel 65% complete.
(Clp Bennings): Come on Sir. I don't like this, it's too quiet.
(Capt. Love): Just as quiet as before Bennings.
(Clp Bennings): Yeah but now there’s a fucking leviathain beneth us.
(Capt. Love): What?
(Clp. Bennings): Nothin’.
<SCS> Lifeform movement 22 miles. Fuel 78% complete
(Capt. Love): Dell get the ship ready for departure. We are not waiting to see this thing, understood?
(Pvt. Dell) Yes sir. Computer, prepare the cockpit for liftoff.
(SCS) Sure. One moment…
<SCS> Initiating manual piloting system…
(Capt. Love): Computer, Fuel status update.
(SCS): One moment… Fuel 86% complete
(Clp Bennings): Alright. Alright, we making progress.
(SCS): ALERT! ALERT! ALERT! Lifeform within 2.75 miles of surface. ALERT! ALERT! ALERT!
(Clp. Bennings): Fuck.
(Capt Love): Run!
(SCS): Lifeform 2.00 miles from surface.
(Dr. Ve): Come on! Hurry!
(SCS): Lifeform 1.52 miles from surface. Warning surface becoming unstable.
(Capt. Love): The Ice is cracking, come on Bennings! Dell start lift off!
(Pvt. Dell): Yes Sir!
<SCS> Manual liftoff engaged. All control to pilot.
(Clp. Bennings): Oh Shit! Guys Help! Fuck thats cold!
(Capt. Love): Shit Bennings! Fuck! Dell get this thing off the ground so we can get him!
<SCS>3 of 4 crew members onboard. Gaining altitude… (SCS): Lifeform within 0.46 miles of surface.
(Clp. Bennings): Oh shit I think I see it! Fuck, I think it sees me!
(Capt. Love): We’re coming, Bennings! Get to a high point!
(SCS): ALERT! ALERT! ALERT! Lifeform has reached the surface. ALERT! ALERT! ALERT!
(Clp. Bennings): Holy— how many eyes does this thing have?!?
(Capt. Love): What the fuck?
(Dr. Ve): Oh God.
(Capt. Love): Dell, you see him? Avoid those tentacles!
(Pvt. Dell): Holy shit! Holy shit! Why didn't I just go to College!
(Capt. Love): Keep it together. Bennings grab my hand!
(Clp Bennings): Ha, got ya! Ok, now pull my ass up!
(Capt. Love): We’re trying! Not our fault you're a mountain of muscle, lay off the gym will ya?
(Clp. Bennings): I’m Sorry!
<SCS> All Crew members have returned to ship. Sealing outer doors…
(Dr. Ve): Alright let me check you over.
(Capt. Love): Ha, good Flying, Dell. Now get us the Fu–
*End of all downloaded information*
I leaned back in my chair sweating, exhausted from simply listening and reading the recount of what happened. My mind spun with billions of horrific images, attempting to grasp what they had encountered. In the end I only succeeded in conjuring a headache, and took a swig of my forgotten coffee, now chilled by the AC unit running full blast. I sat in silence for minutes that stretched for hours, shudders and chills ran up and down my spine. Then a thought pierced me, spurred me into frantic action.
I twisted and pulled on the terminal’s hard unfeeling dials, typing command after command to the point I thought the keyboard would break. I had to reach the Lieutenant, warn her. I know they didn't have the correct equipment to have seen what I had seen, read what I read. I finally got the signal out. One minute turned into two, two to ten, ten to thirty. But the Terminal only displayed static.
oh, but who's to say there is no beauty in the suffering of those frozen martyrs, immortalized forever beneath the ice?
[This account has been flagged for their suspicious activity linked to certain government individuals or groups. Beware of the propaganda machine.]
what if we were brothers in arms in the war torn landscape of europa and i held your bleeding wound as the blood stained the endless, blinding white tundra, your bated breath asking me to bury you back home and our last memory together was looking up to the swirling rings of color on jupiter. what then.
I LOVE this take on my europa trench ice warfare larping
what if we were brothers in arms in the war torn landscape of europa and i held your bleeding wound as the blood stained the endless, blinding white tundra, your bated breath asking me to bury you back home and our last memory together was looking up to the swirling rings of color on jupiter. what then.
what if we were brothers in arms in the war torn landscape of europa and i held your bleeding wound as the blood stained the endless, blinding white tundra, your bated breath asking me to bury you back home and our last memory together was looking up to the swirling rings of color on jupiter. what then.
NATIVE CARBON DIOXIDE FOUND ON JUPITER’S MOON EUROPA
reblog to send that dipshit warmie to the trenches
It's only a matter of time before Eloid finds out about the Europa Ice War posting going on on Twitter and joins in on it in an attempt to be cool and hip.
It wrinkles my brain that Jupiter’s moon Europa has oceans that are sixty miles deep, while Earth’s oceans only reach seven miles deep at most. I’m willing to bet good money that there’s life in Europa’s oceans. Like five bucks. You hear me, NASA? I bet you five bucks that there’s life on Europa… Now that there’s money and reputation on the line, I bet they send a mission there real quick.
Europa Clipper is a space mission crafted with one overarching goal: determine if Jupiter’s ocean moon, Europa, has conditions suitable for life. Watch launch live on Oct. 14 as the largest uncrewed spacecraft we've ever built begins its journey into the solar system.
You’re invited to sign your name to a poem written by the U.S. Poet Laureate, Ada Limón. The poem connects two water worlds — Earth, yearning to reach out and understand what makes a world habitable, and Europa, waiting with secrets yet to be explored.
The poem will be engraved on Europa Clipper, along with participants' names that will be physically etched onto microchips mounted on the spacecraft. Together, the poem and names will travel 1.8 billion miles to the Jupiter system.
Signing up is easy! Just go to this site to sign your name to the poem and get on board. We also have a Spanish-language site where you can send your name en español: Envía tu nombre aquí.
The Europa Clipper launch window opens in October 2024, but don’t wait – everyone’s names need to be received by December 31 this year so they can be loaded onto the spacecraft in time. We hope you’ll be riding along with us! Follow the mission at europa.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space!
Well, at least your name can.
One of the planet Jupiter’s largest and most intriguing moons is called Europa. Evidence hints that beneath its icy shell, Europa hides an ocean of liquid water – more water than all of Earth’s oceans combined. In 2024, our Europa Clipper robotic spacecraft sets sail to take a closer look…and when it launches, your name can physically be aboard! Here’s how:
NASA’s Message in a Bottle campaign invites people around the world to sign their names to a poem written by the U.S. Poet Laureate, Ada Limón. The poem connects the two water worlds — Earth, yearning to reach out and understand what makes a world habitable, and Europa, waiting with secrets yet to be explored.
The poem will be engraved on Europa Clipper, along with participants' names that will be physically etched onto microchips mounted on the spacecraft. Together, the poem and names will travel 1.8 billion miles to the Jupiter system.
Signing up is easy! Just go to this site to sign your name to the poem and get on board. You can send your name en español, too. Envía tu nombre aquí.
The Europa Clipper launch window opens in October 2024, but don’t wait – everyone’s names need to be received this year so they can be loaded onto the spacecraft in time. Sign up by Dec. 31, 2023.
We hope you’ll be riding along with us! Follow the mission at europa.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space!
Image Credit: NOAA
Earth’s ocean has been the backdrop for ancient epics, tales of fictional fish and numerous scientific discoveries. It was, and will always be, a significant piece of the Earth's story. Most of the ocean is unexplored– about 95% of this underwater realm is unseen by human eyes (NOAA). There is only one global Ocean. In fact, the ocean represents over 70% of the Earth's surface and contains 96.5% of the Earth’s water.
We and the NOAA Office of Ocean Exploration and Research work together alongside organizations like the Schmidt Ocean Institute and Ocean Exploration Trust to better understand our oceans and its processes. While space may be the final frontier, understanding our own planet helps scientists as they explore space and study how our universe came to be.
On #WorldOceansDay let’s explore how Earth’s ocean informs our research throughout the solar system.
“In interpreting what we see elsewhere in the solar system and universe, we always compare with phenomena that we already know of on Earth...We work from the familiar toward the unknown.” - Norman Kuring, NASA Goddard
We know of only one living planet: our own. As we move to the next stage in the search for alien life, the effort will require the expertise of scientists of all disciplines. However, the knowledge and tools NASA has developed to study life on Earth will also be one of the greatest assets to the quest.
The photo above shows what Earth would look like at a resolution of 3 pixels, the same that exoplanet-discovering missions would see. What should we look for, in the search of other planets like our own? What are the unmistakable signs of life, even if it comes in a form we don't fully understand? Liquid water; every cell we know of -- even bacteria around deep-sea vents that exist without sunlight -- requires water.
Jupiter’s storms are mesmerizing in their beauty, captured in many gorgeous photos throughout the decades from missions like Voyager 1 and Juno. The ethereal swirls of Jupiter are the result of fluids in motion on a rotating body, which might come as a surprise, since its atmosphere is made of gas!
The eddies in Jupiter’s clouds appear very similar to those found in Earth’s ocean, like in the phytoplankton (or algae) bloom in the Baltic Sea, pictured above. The bloom was swept up in a vortex, just a part of how the ocean moves heat, carbon, and nutrients around the planet. Blooms like this, however, are not all beauty - they create “dead zones” in the areas where they grow, blooming and decaying at such a high rate that they consume all the oxygen in the water around them.
While the Arctic (North Pole) and the Antarctic (South Pole) are “polar opposites,” there is one huge difference between the North and South Poles– land mass. The Arctic is ocean surrounded by land, while the Antarctic is land surrounded by ocean. The North Pole is located in the middle of the Arctic Ocean amid waters that are almost permanently covered with constantly shifting sea ice.
By studying this sea ice, scientists can research its impact on Earth system and even formation processes on other bodies like Europa, an icy moon of Jupiter. For example, it is possible that the reddish surface features on Europa’s ice may have communicated with a global subsurface ocean layer during or after their formation.
As new missions are being developed, scientists are using Earth as a testbed. Just as prototypes for our Mars rovers made their trial runs on Earth's deserts, researchers are testing both hypotheses and technology on our oceans and extreme environments.
NEEMO, our Extreme Environment Mission Operations project, is an analog mission that sends groups of astronauts, engineers and scientists to live in Aquarius, the world's only undersea research station located off the Florida Keys, 62 feet (19 meters) below the surface. Much like space, the undersea world is a hostile, alien place for humans to live. NEEMO crew members, known as aquanauts, experience some of the same challenges there that they would on a distant asteroid, planet or moon.
Video credit: Deep Sea Robotics/Schmidt Ocean Institute and Mars Curiosity rover/NASA
From mapping the seafloor through bathymetry to collecting samples on the surface of Mars, researchers are utilizing new technologies more than ever to explore. Satellite and robotic technology allow us to explore where humans may not be able to– yet. They teach us valuable lessons about the extreme and changing environments, science, as well as provide a platform to test new technologies.
River deltas, the point where a river meets the ocean, are sites of rich sediment and incredible biodiversity. The nutrients that rivers carry to the coastlines make a fertile place for fish and shellfish to lay their eggs.
The Jezero crater on Mars (pictured in false-color on the right) has been selected as the Mars2020 landing site, and has a structure that looks much like a river delta here on Earth! Pictures from our Mars Global Surveyor orbiter show eroded ancient deposits of transported sediment long since hardened into interweaving, curved ridges of layered rock. This is one of many hints that Mars was once covered in an ancient ocean that had more water than the Arctic Ocean. Studying these deltas on Earth helps us spot them on other planets, and learning about the ocean that was once on Mars informs how our own formed.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our solar system was built on impacts — some big, some small — some fast, some slow. This week, in honor of a possible newly-discovered large crater here on Earth, here’s a quick run through of some of the more intriguing impacts across our solar system.
Mercury does not have a thick atmosphere to protect it from space debris. The small planet is riddled with craters, but none as spectacular as the Caloris Basin. “Basin” is what geologists call craters larger than about 186 miles (300 kilometers) in diameter. Caloris is about 950 miles (1,525 kilometers) across and is ringed by mile-high mountains.
For scale, the state of Texas is 773 miles (1,244 kilometers) wide from east to west.
Venus’ ultra-thick atmosphere finishes off most meteors before they reach the surface. The planet’s volcanic history has erased many of its craters, but like almost any place with solid ground in our solar system, there are still impact scars to be found. Most of what we know of Venus’ craters comes from radar images provided by orbiting spacecraft, such as NASA’s Magellan.
Mead Crater is the largest known impact site on Venus. It is about 170 miles (275 kilometers) in diameter. The relatively-flat, brighter inner floor of the crater indicates it was filled with impact melt and/or lava.
Evidence of really big impacts — such as Arizona’s Meteor Crater — are harder to find on Earth. The impact history of our home world has largely been erased by weather and water or buried under lava, rock or ice. Nonetheless, we still find new giant craters occasionally.
A NASA glaciologist has discovered a possible impact crater buried under more than a mile of ice in northwest Greenland.
This follows the finding, announced in November 2018, of a 19-mile (31-kilometer) wide crater beneath Hiawatha Glacier – the first meteorite impact crater ever discovered under Earth’s ice sheets.
If the second crater, which has a width of over 22 miles (35 kilometers), is ultimately confirmed as the result of a meteorite impact, it will be the 22nd largest impact crater found on Earth.
Want to imagine what Earth might look like without its protective atmosphere, weather, water and other crater-erasing features? Look up at the Moon. The Moon’s pockmarked face offers what may be humanity’s most familiar view of impact craters.
One of the easiest to spot is Tycho, the tight circle and bright, radiating splat are easy slightly off center on the lower-left side of the full moon. Closer views of the 53-mile (85 kilometer)-wide crater from orbiting spacecraft reveal a beautiful central peak, topped with an intriguing boulder that would fill about half of a typical city block.
Mars has just enough atmosphere to ensure nail-biting spacecraft landings, but not enough to prevent regular hits from falling space rocks. This dark splat on the Martian south pole is less than a year old, having formed between July and September 2018. The two-toned blast pattern tells a geologic story. The larger, lighter-colored blast pattern could be the result of scouring by winds from the impact shockwave on ice. The darker-colored inner blast pattern is because the impactor penetrated the thin ice layer, blasting the dark sand underneath in all directions.
The bright spots in Ceres’ Occator crater intrigued the world from the moment the approaching Dawn spacecraft first photographed it in 2015. Closer inspection from orbit revealed the spots to be the most visible example of hundreds of bright, salty deposits that decorate the dwarf planet like a smattering of diamonds. The science behind these bright spots is even more compelling: they are mainly sodium carbonate and ammonium chloride that somehow made their way to the surface in a slushy brine from within or below the crust. Thanks to Dawn, scientists have a better sense of how these reflective areas formed and changed over time — processes indicative of an active, evolving world.
Scientists have long known we can learn a lot from impact craters — so, in 2005, they made one themselves and watched it happen.
On July 4, 2005, NASA’s Deep Impact spacecraft trained its instruments on an 816-pound (370-kilogram) copper impactor as it smashed into comet Tempel 1.
One of the more surprising findings: The comet has a loose, “fluffy” structure, held together by gravity and contains a surprising amount of organic compounds that are part of the basic building blocks of life.
Few Star Wars fans — us included — can resist Obi Wan Kenobi's memorable line “That’s no moon…” when images of Saturn’s moon Mimas pop up on a screen. Despite its Death Star-like appearance, Mimas is most definitely a moon. Our Cassini spacecraft checked, a lot — and the superlaser-looking depression is simply an 81-mile (130-kilometer) wide crater named for the moon’s discoverer, William Herschel.
The Welsh name of this crater on Jupiter’s ocean moon Europa looks like a tongue-twister, but it is easiest pronounced as “pool.” Pwyll is thought to be one of the youngest features we know of on Europa. The bright splat from the impact extends more than 600 miles (about 1,000 kilometers) around the crater, a fresh blanket over rugged, older terrain. “Fresh,” or young, is a relative term in geology; the crater and its rays are likely millions of years old.
Got a passion for Stickney, the dominant bowl-shaped crater on one end of Mars’ moon Phobos? Or a fondness for the sponge-like abundance of impacts on Saturn’s battered moon Hyperion (pictured)? There are countless craters to choose from. Share your favorites with us on Twitter, Instagram and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Icy Hearts: A heart-shaped calving front of a glacier in Greenland (left) and Pluto's frozen plains (right). Credits: NASA/Maria-Jose Viñas and NASA/APL/SwRI
From deep below the soil at Earth’s polar regions to Pluto’s frozen heart, ice exists all over the solar system...and beyond. From right here on our home planet to moons and planets millions of miles away, we’re exploring ice and watching how it changes. Here’s 10 things to know:
An Antarctic ice sheet. Credit: NASA
Ice sheets are massive expanses of ice that stay frozen from year to year and cover more than 6 million square miles. On Earth, ice sheets extend across most of Greenland and Antarctica. These two ice sheets contain more than 99 percent of the planet’s freshwater ice. However, our ice sheets are sensitive to the changing climate.
Data from our GRACE satellites show that the land ice sheets in both Antarctica and Greenland have been losing mass since at least 2002, and the speed at which they’re losing mass is accelerating.
Earth’s polar oceans are covered by stretches of ice that freezes and melts with the seasons and moves with the wind and ocean currents. During the autumn and winter, the sea ice grows until it reaches an annual maximum extent, and then melts back to an annual minimum at the end of summer. Sea ice plays a crucial role in regulating climate – it’s much more reflective than the dark ocean water, reflecting up to 70 percent of sunlight back into space; in contrast, the ocean reflects only about 7 percent of the sunlight that reaches it. Sea ice also acts like an insulating blanket on top of the polar oceans, keeping the polar wintertime oceans warm and the atmosphere cool.
Some Arctic sea ice has survived multiple years of summer melt, but our research indicates there’s less and less of this older ice each year. The maximum and minimum extents are shrinking, too. Summertime sea ice in the Arctic Ocean now routinely covers about 30-40 percent less area than it did in the late 1970s, when near-continuous satellite observations began. These changes in sea ice conditions enhance the rate of warming in the Arctic, already in progress as more sunlight is absorbed by the ocean and more heat is put into the atmosphere from the ocean, all of which may ultimately affect global weather patterns.
Snow extends the cryosphere from the poles and into more temperate regions.
Snow and ice cover most of Earth’s polar regions throughout the year, but the coverage at lower latitudes depends on the season and elevation. High-elevation landscapes such as the Tibetan Plateau and the Andes and Rocky Mountains maintain some snow cover almost year-round. In the Northern Hemisphere, snow cover is more variable and extensive than in the Southern Hemisphere.
Snow cover the most reflective surface on Earth and works like sea ice to help cool our climate. As it melts with the seasons, it provides drinking water to communities around the planet.
Tundra polygons on Alaska's North Slope. As permafrost thaws, this area is likely to be a source of atmospheric carbon before 2100. Credit: NASA/JPL-Caltech/Charles Miller
Permafrost is soil that stays frozen solid for at least two years in a row. It occurs in the Arctic, Antarctic and high in the mountains, even in some tropical latitudes. The Arctic’s frozen layer of soil can extend more than 200 feet below the surface. It acts like cold storage for dead organic matter – plants and animals.
In parts of the Arctic, permafrost is thawing, which makes the ground wobbly and unstable and can also release those organic materials from their icy storage. As the permafrost thaws, tiny microbes in the soil wake back up and begin digesting these newly accessible organic materials, releasing carbon dioxide and methane, two greenhouse gases, into the atmosphere.
Two campaigns, CARVE and ABoVE, study Arctic permafrost and its potential effects on the climate as it thaws.
Did you know glaciers are constantly moving? The masses of ice act like slow-motion rivers, flowing under their own weight. Glaciers are formed by falling snow that accumulates over time and the slow, steady creep of flowing ice. About 10 percent of land area on Earth is covered with glacial ice, in Greenland, Antarctica and high in mountain ranges; glaciers store much of the world's freshwater.
Our satellites and airplanes have a bird’s eye view of these glaciers and have watched the ice thin and their flows accelerate, dumping more freshwater ice into the ocean, raising sea level.
The nitrogen ice glaciers on Pluto appear to carry an intriguing cargo: numerous, isolated hills that may be fragments of water ice from Pluto's surrounding uplands. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto’s most famous feature – that heart! – is stone cold. First spotted by our New Horizons spacecraft in 2015, the heart’s western lobe, officially named Sputnik Planitia, is a deep basin containing three kinds of ices – frozen nitrogen, methane and carbon monoxide.
Models of Pluto’s temperatures show that, due the dwarf planet’s extreme tilt (119 degrees compared to Earth’s 23 degrees), over the course of its 248-year orbit, the latitudes near 30 degrees north and south are the coldest places – far colder than the poles. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia.
New Horizons also saw strange ice formations resembling giant knife blades. This “bladed terrain” contains structures as tall as skyscrapers and made almost entirely of methane ice, likely formed as erosion wore away their surfaces, leaving dramatic crests and sharp divides. Similar structures can be found in high-altitude snowfields along Earth’s equator, though on a very different scale.
This image, combining data from two instruments aboard our Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. Credit: NASA/JPL-Caltech/MSSS
Mars has bright polar caps of ice easily visible from telescopes on Earth. A seasonal cover of carbon dioxide ice and snow advances and retreats over the poles during the Martian year, much like snow cover on Earth.
This animation shows a side-by-side comparison of CO2 ice at the north (left) and south (right) Martian poles over the course of a typical year (two Earth years). This simulation isn't based on photos; instead, the data used to create it came from two infrared instruments capable of studying the poles even when they're in complete darkness. This data were collected by our Mars Reconnaissance Orbiter, and Mars Global Surveyor. Credit: NASA/JPL-Caltech
During summertime in the planet's north, the remaining northern polar cap is all water ice; the southern cap is water ice as well, but remains covered by a relatively thin layer of carbon dioxide ice even in summertime.
Scientists using radar data from our Mars Reconnaissance Orbiter found a record of the most recent Martian ice age in the planet's north polar ice cap. Research indicates a glacial period ended there about 400,000 years ago. Understanding seasonal ice behavior on Mars helps scientists refine models of the Red Planet's past and future climate.
Wispy fingers of bright, icy material reach tens of thousands of kilometers outward from Saturn's moon Enceladus into the E ring, while the moon's active south polar jets continue to fire away. Credit: NASA/JPL/Space Science Institute
Saturn’s rings and many of its moons are composed of mostly water ice – and one of its moons is actually creating a ring. Enceladus, an icy Saturnian moon, is covered in “tiger stripes.” These long cracks at Enceladus’ South Pole are venting its liquid ocean into space and creating a cloud of fine ice particles over the moon's South Pole. Those particles, in turn, form Saturn’s E ring, which spans from about 75,000 miles (120,000 kilometers) to about 260,000 miles (420,000 kilometers) above Saturn's equator. Our Cassini spacecraft discovered this venting process and took high-resolution images of the system.
Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL/Space Science Institute
View of a small region of the thin, disrupted, ice crust in the Conamara region of Jupiter's moon Europa showing the interplay of surface color with ice structures. Credit: NASA/JPL/University of Arizona
The icy surface of Jupiter’s moon Europa is crisscrossed by long fractures. During its flybys of Europa, our Galileo spacecraft observed icy domes and ridges, as well as disrupted terrain including crustal plates that are thought to have broken apart and "rafted" into new positions. An ocean with an estimated depth of 40 to 100 miles (60 to 150 kilometers) is believed to lie below that 10- to 15-mile-thick (15 to 25 km) shell of ice.
The rafts, strange pits and domes suggest that Europa’s surface ice could be slowly turning over due to heat from below. Our Europa Clipper mission, targeted to launch in 2022, will conduct detailed reconnaissance of Europa to see whether the icy moon could harbor conditions suitable for life.
The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right), detected by our Moon Mineralogy Mapper instrument. Credit: NASA
In the darkest and coldest parts of our Moon, scientists directly observed definitive evidence of water ice. These ice deposits are patchy and could be ancient. Most of the water ice lies inside the shadows of craters near the poles, where the warmest temperatures never reach above -250 degrees Fahrenheit. Because of the very small tilt of the Moon’s rotation axis, sunlight never reaches these regions.
A team of scientists used data from a our instrument on India’s Chandrayaan-1 spacecraft to identify specific signatures that definitively prove the water ice. The Moon Mineralogy Mapper not only picked up the reflective properties we’d expect from ice, but was able to directly measure the distinctive way its molecules absorb infrared light, so it can differentiate between liquid water or vapor and solid ice.
With enough ice sitting at the surface – within the top few millimeters – water would possibly be accessible as a resource for future expeditions to explore and even stay on the Moon, and potentially easier to access than the water detected beneath the Moon’s surface.
With an estimated temperature of just 50K, OGLE-2005-BLG-390L b is the chilliest exoplanet yet discovered. Pictured here is an artist's concept. Credit: NASA
OGLE-2005-BLG-390Lb, the icy exoplanet otherwise known as Hoth, orbits a star more than 20,000 light years away and close to the center of our Milky Way galaxy. It’s locked in the deepest of deep freezes, with a surface temperature estimated at minus 364 degrees Fahrenheit (minus 220 Celsius)!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Every day, our spacecraft and people are exploring the solar system. Both the public and the private sectors are contributing to the quest. For example, here are ten things happening just this week:
1. We deliver.
The commercial space company Orbital ATK is targeting Saturday, Nov. 11 for the launch of its Cygnus spacecraft on an Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Cygnus is launching on a resupply mission to the International Space Station, carrying cargo and scientific experiments to the six people currently living on the microgravity laboratory.
2. See for yourself.
Social media users are invited to register to attend another launch in person, this one of a SpaceX Falcon 9 rocket carrying the Dragon spacecraft from Cape Canaveral Air Force Station in Florida. This launch, currently targeted for no earlier than December, will be the next commercial cargo resupply mission to the International Space Station. The deadline to apply is Nov. 7. Apply HERE.
3. Who doesn't like to gaze at the Moon?
Our Lunar Reconnaissance Orbiter (LRO) sure does—and from very close range. This robotic spacecraft has been orbiting Earth's companion since 2009, returning views of the lunar surface that are so sharp they show the footpaths made by Apollo astronauts. Learn more about LRO and the entire history of lunar exploration at NASA's newly-updated, expanded Moon site: moon.nasa.gov
4. Meanwhile at Mars...
Another sharp-eyed robotic spacecraft has just delivered a fresh batch of equally detailed images. Our Mars Reconnaissance Orbiter (MRO) surveys the Red Planet's surface daily, and you can see the very latest pictures of those exotic landscapes HERE. We currently operate five—count 'em, five—active missions at Mars, with another (the InSight lander) launching next year. Track them all at: mars.nasa.gov.
5. Always curious.
One of those missions is the Curiosity rover. It's currently climbing a rocky highland dubbed Vera Rubin Ridge, turning its full array of instruments on the intriguing geology there. Using those instruments, Curiosity can see things you and I can't.
6. A new Dawn.
Our voyage to the asteroid belt has a new lease on life. The Dawn spacecraft recently received a mission extension to continue exploring the dwarf planet Ceres. This is exciting because minerals containing water are widespread on Ceres, suggesting it may have had a global ocean in the past. What became of that ocean? Could Ceres still have liquid today? Ongoing studies from Dawn could shed light on these questions.
7. There are eyes everywhere.
When our Mars Pathfinder touched down in 1997, it had five cameras: two on a mast that popped up from the lander, and three on the rover, Sojourner. Since then, photo sensors that were improved by the space program have shrunk in size, increased in quality and are now carried in every cellphone. That same evolution has returned to space. Our Mars 2020 mission will have more "eyes" than any rover before it: a grand total of 23, to create sweeping panoramas, reveal obstacles, study the atmosphere, and assist science instruments.
8. Voyage to a hidden ocean.
One of the most intriguing destinations in the solar system is Jupiter's moon Europa, which hides a global ocean of liquid water beneath its icy shell. Our Europa Clipper mission sets sail in the 2020s to take a closer look than we've ever had before. You can explore Europa, too: europa.nasa.gov
9. Flight of the mockingbird.
On Nov. 10, the main belt asteroid 19482 Harperlee, named for the legendary author of To Kill a Mockingbird, makes its closest approach to Earth during the asteroid's orbit around the Sun. Details HERE. Learn more about asteroids HERE. Meanwhile, our OSIRIS-REx mission is now cruising toward another tiny, rocky world called Bennu.
10. What else is up this month?
For sky watchers, there will be a pre-dawn pairing of Jupiter and Venus, the Moon will shine near some star clusters, and there will be meteor activity all month long. Catch our monthly video blog for stargazers HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
1. We will add to our existing robotic fleet at the Red Planet with the InSight Mars lander set to study the planet's interior.
This terrestrial planet explorer will address one of the most fundamental issues of planetary and solar system science - understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.
2. The Mars 2020 rover will look for signs of past microbial life, gather samples for potential future return to Earth.
The Mars 2020 mission takes the next step by not only seeking signs of habitable conditions on the Red Planet in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a "cache" on the surface of Mars.
3. The James Webb Space Telescope will be the premier observatory of the next decade, studying the history of our Universe in infrared.
Webb will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.
4. The Parker Solar Probe will "touch the Sun," traveling closer to the surface than any spacecraft before.
This spacecraft, about the size of a small car, will travel directly into the sun's atmosphere about 4 million miles from our star's surface. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.
5. Our OSIRIS-REx spacecraft arrives at the near-Earth asteroid Bennu in August 2018, and will return a sample for study in 2023.
This mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.
6. Launching in 2018, the Transiting Exoplanet Survey Satellite (TESS) will search for planets around 200,000 bright, nearby stars.
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system (exoplanets), including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
7. A mission to Jupiter's ocean-bearing moon Europa is being planned for launch in the 2020s.
The mission will place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of Europa -- a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life.
8. We will launch our first integrated test flight of the Space Launch System rocket and Orion spacecraft, known as Exploration Mission-1.
The Space Launch System rocket will launch with Orion atop it. During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.
9. We are looking at what a flexible deep space gateway near the Moon could be.
We’ve issued a draft announcement seeking U.S. industry-led studies for an advanced solar electric propulsion (SEP) vehicle capability. The studies will help define required capabilities and reduce risk for the 50 kilowatt-class SEP needed for the agency’s near-term exploration goals.
10. Want to know more? Read the full story.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Hearing a lot about ocean worlds today? Let’s dive in and see what this news is all about...
We once thought oceans made our planet unique, but we’re now coming to realize that ‘ocean worlds’ are all around us.
Two veteran NASA missions are providing new details about icy, ocean-bearing moons of Jupiter and Saturn, further heightening the scientific interest of these and other ‘ocean worlds’ in our solar system and beyond. The findings are presented in papers published Thursday by researchers with our Cassini mission to Saturn and Hubble Space Telescope.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Galileo spacecraft (1989-2003) detected the first evidence of an ocean beyond Earth under the ice of Jupiter's icy moon Europa.
There are signs that Mars and Venus once had oceans, but something catastrophic may have wiped them out. Earth's natural force field -- our magnetosphere -- acts like shield against the erosive force of the solar wind.
The search for life beyond Earth relies, in large part, on understanding our home planet. Among the newest Earth ocean explorers us the Cyclone Global Navigation Satellite System, or CYGNSS--a constellation of microsatellites that will make detailed measurements of wind speeds over Earth's oceans to help understand hurricanes. The spacecraft have moved into their science operations phase.
It's fitting the first mission to explore an alien ocean is named in honor of fast-sailing clipper ships of old. Our Europa Clipper spacecraft will seek signs of habitability on Jupiter's moon Europa.
Scientists expected Saturn's moon Enceladus to be a tiny, solid chunk of ice and rock. But, not long after arriving at Saturn, our Cassini spacecraft made a series of incremental discoveries, eventually confirming that a global subsurface ocean is venting into space, with signs of hydrothermal activity.
"The question of whether or not life exists beyond Earth, the question of whether or not biology works beyond our home planet, is one of humanity's oldest and yet unanswered questions. And for the first time in the history of humanity, we have the tools and technology and capability to potentially answer this question. And, we know where to go to find it. Jupiter's ocean world Europa." - Kevin Hand, NASA Astrobiologist
Scientists think Jupiter's giant moons Ganymede and Callisto also hide oceans beneath their surfaces. Elsewhere in the solar system, scientists hope to look for hidden oceans on far-flung worlds from Ceres in the main asteroid belt to Pluto in the Kuiper Belt.
Thanks to our Cassini orbiter we know the tiny moon Enceladus is venting its ocean into space in a towering, beautiful plume. The Hubble Space Telescope also has seen tantalizing hints of plumes on Jupiter's moon Europa. Plumes are useful because they provide samples of ocean chemistry for oceans that could be miles below the surface and difficult for spacecraft to reach. It's like they're giving out free samples!
Saturn's moon Titan not only has liquid hydrocarbon seas on its surface. It also shows signs of a global, subsurface saltwater ocean--making the giant moon a place to possibly look for life as we know it and life as we don't know it ... yet.
Several of the thousands of planets discovered beyond our solar system orbit their stars in zones where liquid surface water is possible--including Proxima-b, a rocky planet orbiting the star nearest to our own.
We invite everyone to help us celebrate Earth Day 2017 by virtually adopting a piece of Earth as seen from space. Your personalized adoption certificate will feature data from our Earth-observing satellites for a randomly assigned location, much of it ocean (it is 70 percent of the Earth's surface after all!). Print it and share it, then explore other locations with our interactive map and get even more Earth science data from NASA's Worldview website.
Visit go.nasa.gov/adopt to adopt your piece of the planet today!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
SOFIA, the Stratospheric Observatory for Infrared Astronomy, as our flying telescope is called, is a Boeing 747SP aircraft that carries a 2.5-meter telescope to altitudes as high as 45,000 feet. Researchers use SOFIA to study the solar system and beyond using infrared light. This type of light does not reach the ground, but does reach the altitudes where SOFIA flies.
Recently, we used SOFIA to study water on Venus, hoping to learn more about how that planet lost its oceans. Our researchers used a powerful instrument on SOFIA, called a spectrograph, to detect water in its normal form and “heavy water,” which has an extra neutron. The heavy water takes longer to evaporate and builds up over time. By measuring how much heavy water is on Venus’ surface now, our team will be able to estimate how much water Venus had when the planet formed.
We are also using SOFIA to create a detailed map of the Whirlpool Galaxy by making multiple observations of the galaxy. This map will help us understand how stars form from clouds in that galaxy. In particular, it will help us to know if the spiral arms in the galaxy trigger clouds to collapse into stars, or if the arms just show up where stars have already formed.
We can also use SOFIA to study methane on Mars. The Curiosity rover has detected methane on the surface of Mars. But the total amount of methane on Mars is unknown and evidence so far indicates that its levels change significantly over time and location. We are using SOFIA to search for evidence of this gas by mapping the Red Planet with an instrument specially tuned to sniff out methane.
Next our team will use SOFIA to study Jupiter’s icy moon Europa, searching for evidence of possible water plumes detected by the Hubble Space Telescope. The plumes, illustrated in the artist’s concept above, were previously seen in images as extensions from the edge of the moon. Using SOFIA, we will search for water and determine if the plumes are eruptions of water from the surface. If the plumes are coming from the surface, they may be erupting through cracks in the ice that covers Europa’s oceans. Members of our SOFIA team recently discussed studying Europa on the NASA in Silicon Valley Podcast.
This is the view of Jupiter and its moons taken with SOFIA’s visible light guide camera that is used to position the telescope.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. Rosetta’s Last Dance
The Rosetta mission was one of firsts: the first to orbit a comet and the first to dispatch a lander to a comet's surface. Rosetta transformed our understanding of these ancient wanderers, and this week, mission controllers will command the spacecraft to execute a series of maneuvers to bring it out of orbit around Comet 67P/Churyumov-Gerasimenko. Watch live on Sept. 30 from 6:15-8 a.m. EDT, the Rosetta mission's 12-year odyssey in space reaches its conclusion. Rosetta will descend to make a planned impact on the comet’s surface with its instruments recording science data during descent.
+Watch live as Rosetta crash lands on NASA TV, recording data along the way
+More on the mission’s final descent
+Mission highlights
2. Hubble Spots Possible Water Plumes Erupting on Jupiter's Moon Europa
On Monday, Sept. 26, our scientists announced what may be water vapor plumes erupting off the surface of Jupiter's moon Europa, based on data from the Hubble Space Telescope. This finding bolsters other Hubble observations suggesting the icy moon erupts with high altitude water vapor plumes.
+Learn the latest on Europa
3. Not So Impossible After All
Scientists have found an "impossible" ice cloud on Saturn's moon Titan. The puzzling appearance of an ice cloud prompted our researchers to suggest that a different process than previously thought could be forming clouds on Titan. The process may be similar to one seen over Earth's poles. Today, the Cassini spacecraft will perform a targeted Titan flyby, skimming just 1,079 miles (1,736 kilometers) above its hazy surface. Several of Cassini's instruments will be watching for clouds and other phenomena in the atmosphere, as well as taking measurements of the surface.
+Learn more about Titan’s clouds
4. Lunar Intrigue
Earth's moon is a colorless world of grays and whites, right? Not really. As seen in these images from the Lunar Reconnaissance Orbiter, some landscapes on the moon reveal a whole range of color. One such place is the mountainous complex of ancient lava flows known as the Lassell Massif, one of the moon's so-called "red spots."
+Take a look
5. Weather Report: Mars
A camera aboard our Mars Reconnaissance Orbiter monitors global weather patterns daily. The most recent report includes the remains of a large dust storm in the Noachis region, and smaller tempests spotted along the edge of the south polar ice cap and water-ice clouds over the volcano Arsia Mons.
+ Learn more and see Mars weather videos
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are a few things you should know this week:
1. Science at the Edge
As the New Horizons spacecraft speeds away at more than 31,000 miles per hour (14 km/s) it continues to explore the Kuiper Belt, the region of icy bodies beyond Neptune. New Horizons has now twice observed 1994 JR1, a 90-mile-wide object orbiting more than 3 billion miles from the sun.
2. A Spaceship, Refined
This artist’s rendering shows our Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. The mission will place a spacecraft in orbit around Jupiter to explore the giant planet’s moon Europa. This updated concept image shows tow large solar arrays extending from the sides of the spacecraft, to which the mission’s ice-penetrating radar antennas are attached. A saucer-shaped high-gain antenna is also side mounted with a magnetometer boom placed next to it. Find out more about the spacecraft HERE.
3. Sojourn at Saturn
The Cassini spacecraft is hard at work this week, orbiting Saturn to study the planet and its rings. The recent pictures are spectacular, take a look at them HERE.
4. Talking Juno
Our Juno mission arrives at Jupiter on July 4, and that presents a unique opportunity for educators, science communicators and anyone interested in space exploration. We are providing a growing set of Juno-related information resources. Take a look at them HERE.
5. Now THAT’S a Long Distance Call
How do explorers on Earth talk to astronauts and robotic spacecraft flung across the far reaches of space? They use the remarkable technology deployed by our Space Communications and Navigation (SCaN) Program Office. This month, SCaN is celebrating its 10th anniversary of managing the ultimate network. Find out how it works HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things you should know this week:
1. From Pluto, with Love
Last Valentine’s Day, no one had even seen Pluto’s most famous feature, the heart-shaped Sputnik Planum. These days, the New Horizons spacecraft is sending more and more pictures back to Earth from its Pluto flyby last July. We received new ones almost on a weekly basis. For the latest love from the outer solar system, go HERE.
2. Saturn’s Rings: More (and Less) than Meets the Eye
The Cassini spacecraft is executing a series of maneuvers to raise its orbit above the plane of Saturn’s famous rings. This will offer some breathtaking views that you won’t want to miss. Meanwhile, Cassini scientists are learning surprising things, such as the fact that the most opaque sections of the rings are not necessarily the thickest.
3. Stay on Target
The Juno spacecraft recently completed a course correction maneuver to fine-tune its approach to Jupiter. After years of flight and millions of miles crossed, arrival time is now set to the minute: July 4th at 11:18 p.m. EST. See why we’re going to jupiter HERE.
4. The Many Lives of “Planet X”
The announcement of a potential new planet beyond Neptune creates an opportunity to look back at the ongoing search for new worlds in the unmapped reaches of our own solar system. Review what we’ve found so far, and what else might be out there HERE.
5. Answering the Call of Europa
There are a few places more intriguing that Jupiter’s icy moon, Europa, home to an underground ocean with all the ingredients necessary for potential life. We’re undertaking a new mission to investigate, and the project’s top manager and scientist will be giving a live lecture to detail their plans. Join Barry Goldstein and Bob Pappalardo on Feb. 11 at 10 p.m. EST for a live lecture series on Ustream.
Want to learn more? Read our full list of the 10 things to know this week HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com