Experience Tumblr Like Never Before
Sean bienvenidos japonistasarqueológicos, una nueva entrega en esta ocasión hablaremos del Tanabata una vez dicho esto pónganse cómodos que empezamos. - ¿Qué es el tanabata?¿Cuándo se celebra?¿Cuál es su origen?El tanabata, surge en China en la dinastía Han que posteriormente llegará a Japón durante el período Nara (710 d.C.- 794 d.C.) a través de la nobleza ,pero no fue hasta el período Edo (1600-1868) que se hizo popular. Esto lo podemos ver en el anime como es el caso de Doraemon (ドラえもん), pero hay montones de animes que tratan esta temática una película que trata estos temas podrían ser: Amor de Gata, Kimi no Nawa, Kimetsu no Yaiba podría hacer una lista que nunca acabaria de la cantidad de anime que hay que trata el Tanabata. ¿Qué es el tanabata? Cuenta la leyenda de Orihime y Hikoboshi que solo se pueden ver la séptima luna del séptimo mes, se crea un puente que les permite cruzar y estar juntos ¿Cuándo se celebra? Se celebra el 7 de julio y lo más característico de esta festividad son los fuegos artificiales y en Tokyo por ejemplo: el templo Zojoji, pero cualquier templo lo podréis apreciar muy bien. tanzaku ¿En qué consiste? Se coloca un trozo de papel con tu deseo y se colocan en árboles de bambú. Para terminar me gustaría mencionar que hay una constelación que representa esta maravillosa historia. - Espero que os haya gustado y nos vemos en próximas publicaciones que pasen una buena semana. - ようこそ、日本の考古学者たちへ。今回は七夕についてお話します。 - 七夕とは何か、いつ祝うのか、その起源は? 七夕は中国の漢の時代に始まり、奈良時代に貴族を通じて日本に伝わった。 ドラえもんなどのアニメに見られるが、このテーマを扱ったアニメはたくさんある:七夕を扱ったアニメは枚挙にいとまがない。織姫と彦星は七夕の日にしか会えないという伝説がある。 いつ祝うの?月7日に行われます。このお祭りの最大の特徴は花火で、東京では増上寺が有名ですが、どこのお寺でもよく鑑賞できます。 短冊 短冊とはどんなものですか?願い事を書いた紙を竹に貼る。最後に、この素晴らしい物語を象徴する星座があることをお伝えしたい。 - それでは、また次の記事でお会いしましょう。
Welcome to the Japanese archaeologists, this time we are going to talk about Tanabata, so make yourselves comfortable and let's get started. - What is tanabata, when is it celebrated, what is its origin? Tanabata, which originated in China in the Han dynasty, later came to Japan during the Nara period (710 AD - 794 AD) through the nobility, but it was not until the Edo period (1600-1868) that it became popular. This can be seen in anime such as Doraemon (ドラえもん), but there are lots of anime that deal with this theme, a movie that deals with these themes could be: Love of Cat, Kimi no Nawa, Kimetsu no Yaiba I could make a list that would never end of the amount of anime out there that deals with Tanabata. what is tanabata? Legend has it that Orihime and Hikoboshi can only see each other on the seventh moon of the seventh month, a bridge is created that allows them to cross and be together. When is it celebrated? It is celebrated on the 7th of July and the most characteristic of this festivity are the fireworks and in Tokyo for example: the Zojoji temple, but you can appreciate it very well in any temple. tanzaku What does it consist of? You put a piece of paper with your wish on it and place it on bamboo trees. Finally, I would like to mention that there is a constellation that represents this wonderful story. - I hope you liked it and see you in the next posts have a nice week.
I have decided on a new constellation. I call it The Bees. If you look up at the night sky and see all those sparkly dots, congratulations. You see The Bees. I have just made astrology 10000x easier, you’re welcome.
Space Tommy 🌌
I wanted to draw c!tommyinnit in honor of his finale, since he has been my favorite character and I somehow hadn’t drawn fanart of him (other than for the danger dsmp au). I had the idea for him to be floating in space, which eventually ended up with a constellation version as well ✨
In the constellation, I added the discs and the compass, as well as stars that line up with the l’manberg flag and are meant to represent his three deaths 🗡️🏹🥔
I’m really happy with this design for him and how this turned out! c!tommyinnit my shining star, you deserved so much better 💙
Do you ever look up at the night sky and get lost in the stars? Maybe while you’re stargazing, you spot some of your favorite constellations. But did you know there’s more to constellations than meets the eye? They’re not just a bunch of imaginary shapes made up of stars — constellations tell us stories about the universe from our perspective on Earth.
A constellation is a named pattern of stars that looks like a particular shape. Think of it like connecting the dots. If you join the dots — stars, in this case — and use your imagination, the picture would look like an object, animal, or person. For example, the ancient Greeks believed an arrangement of stars in the sky looked like a giant hunter with a sword attached to his belt, so they named it after a famous hunter in their mythology, Orion. It’s one of the most recognizable constellations in the night sky and can be seen around the world. The easiest way to find Orion is to go outside on a clear night and look for three bright stars close together in an almost-straight line. These three stars represent Orion's belt. Two brighter stars to the north mark his shoulders, and two more to the south represent his feet.
Credit: NASA/STScI
Over time, cultures around the world have had different names and numbers of constellations depending on what people thought they saw. Today, there are 88 officially recognized constellations. Though these constellations are generally based on what we can see with our unaided eyes, scientists have also invented unofficial constellations for objects that can only be seen in gamma rays, the highest-energy form of light.
The stars in constellations may look close to each other from our point of view here on Earth, but in space they might be really far apart. For example, Alnitak, the star at the left side of Orion's belt, is about 800 light-years away. Alnilam, the star in the middle of the belt, is about 1,300 light-years away. And Mintaka, the star at the right side of the belt, is about 900 light-years away. Yet they all appear from Earth to have the same brightness. Space is three-dimensional, so if you were looking at the stars that make up the constellation Orion from another part of our galaxy, you might see an entirely different pattern!
Now that we know a little bit more about constellations, let’s talk about the supercool cosmic objects that form them – stars! Though over a dozen stars make up Orion, two take center stage. The red supergiant Betelgeuse (Orion's right shoulder) and blue supergiant Rigel (Orion's left foot) stand out as the brightest members in the constellation.
Credit: Derrick Lim
Betelgeuse is a young star by stellar standards, about 10 million years old, compared to our nearly 5 billion-year-old Sun. The star is so huge that if it replaced the Sun at the center of our solar system, it would extend past the main asteroid belt between Mars and Jupiter! But due to its giant mass, it leads a fast and furious life.
Betelgeuse is destined to end in a supernova blast. Scientists discovered a mysterious dimming of Betelgeuse in late 2019 caused by a traumatic outburst that some believed was a precursor to this cosmic event. Though we don’t know if this incident is directly related to an imminent supernova, there’s a tiny chance it might happen in your lifetime. But don't worry, Betelgeuse is about 550 light-years away, so this event wouldn't be dangerous to us – but it would be a spectacular sight.
Rigel is also a young star, estimated to be 8 million years old. Like Betelgeuse, Rigel is much larger and heavier than our Sun. Its surface is thousands of degrees hotter than Betelgeuse, though, making it shine blue-white rather than red. These colors are even noticeable from Earth. Although Rigel is farther from Earth than Betelgeuse (about 860 light-years away), it is intrinsically brighter than its companion, making it the brightest star in Orion and one of the brightest stars in the night sky.
Credit: Rogelio Bernal Andreo
Some dots that make up constellations are actually more than one star, but from a great distance they look like a single object. Remember Mintaka, the star at the far right side of Orion's belt? It is not just a single star, but actually five stars in a complex star system.
Credit: X-ray: NASA/CXC/GSFC/M. Corcoran et al.; Optical: Eckhard Slawik
Below the three bright stars of Orion’s belt lies his sword, where you can find the famous Orion Nebula. The nebula is only 1,300 light-years away, making it the closest large star-forming region to Earth. Because of its brightness and prominent location just below Orion’s belt, you can actually spot the Orion Nebula from Earth! But with a pair of binoculars, you can get a much more detailed view of the stellar nursery. It’s best visible in January and looks like a fuzzy “star” in the middle of Orion’s sword.
In addition to newborn stars, Orion also has some other awesome cosmic objects hanging around. Scientists have discovered exoplanets, or planets outside of our solar system, orbiting stars there. One of those planets is a giant gas world three times more massive than Jupiter. It’s estimated that on average there is at least one planet for every star in our galaxy. Just think of all the worlds you may be seeing when you look up at the night sky!
It’s also possible that the Orion Nebula might be home to a black hole, making it the closest known black hole to Earth. Though we may never detect it, because no light can escape black holes, making them invisible. However, space telescopes with special instruments can help find black holes. They can observe the behavior of material and stars that are very close to black holes, helping scientists find clues that can lead them closer to discovering some of these most bizarre and fascinating objects in the cosmos.
Next time you go stargazing, remember that there’s more to the constellations than meets the eye. Let them guide you to some of the most incredible and mysterious objects of the cosmos — young stars, brilliant nebulae, new worlds, star systems, and even galaxies!
To keep up with the most recent stellar news, follow NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
You'll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you'll see Venus's phase change dramatically during September - from nearly half phase to a larger thinner crescent!
Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.
Use the summer constellations help you trace the Milky Way.
Sagittarius: where stars and some brighter clumps appear as steam from the teapot.
Aquila: where the Eagle's bright Star Altair, combined with Cygnus's Deneb, and Lyra's Vega mark the Summer Triangle.
Cassiopeia, the familiar "w"- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae.
Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars!
Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.
Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth's eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.
And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch "What's Up" from March 2018.
Watch the full What’s Up for September Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Perseid meteor shower is the best of the year! It peaks on a Moonless summer night from 4 p.m. EST on August 12 until 4 a.m. EST on August 13.
Because the new Moon falls near the peak night, the days before and after the peak will also provide nice, dark skies. Your best window of observation is from a few hours after twilight until dawn, on the days surrounding the peak.
Unlike most meteor showers, which have a short peak of high meteor rates, the Perseids have a very broad peak, as Earth takes more than three weeks to plow through the wide trail of cometary dust from comet Swift-Tuttle.
The Perseids appear to radiate from the constellation Perseus, visible in the northern sky soon after sunset this time of year. Observers in mid-northern latitudes will have the best views.
You should be able to see some meteors from July 17 to August 24, with the rates increasing during the weeks before August 12 and decreasing after August 13.
Observers should be able to see between 60 and 70 per hour at the peak. Remember, you don't have to look directly at the constellation to see them. You can look anywhere you want to-even directly overhead.
Meteor showers like the Perseids are caused by streams of meteoroids hitting Earth's atmosphere. The particles were once part of their parent comet-or, in some cases, from an asteroid.
The parade of planets Venus, Jupiter, Saturn and Mars--and the Milky Way continue to grace the evening sky, keeping you and the mosquitoes company while you hunt for meteors.
Watch the full What’s Up for August Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Mars is closest to Earth since 2003!
July’s night skies feature Mars opposition on the 27th, when Mars, Earth, and the Sun all line up, and Mars’ closest approach to Earth since 2003 on the 31st.
If you've been sky watching for 15 years or more, then you'll remember August 2003, when Mars approached closer to Earth than it had for thousands of years.
It was a very small percentage closer, but not so much that it was as big as the moon as some claimed.
Astronomy clubs everywhere had long lines of people looking through their telescopes at the red planet, and they will again this month!
If you are new to stargazing, this month and next will be a great time to check out Mars.
Through a telescope, you should be able to make out some of the light and dark features, and sometimes polar ice. Right now, though, a huge Martian dust storm is obscuring many features, and less planetary detail is visible.
July 27th is Mars opposition, when Mars, Earth, and the Sun all line up, with Earth directly in the middle.
A few days later on July 31st is Mars' closest approach. That's when Mars and Earth are nearest to each other in their orbits around the Sun. Although there will be a lot of news focusing on one or the other of these two dates, Mars will be visible for many months.
By the end of July, Mars will be visible at sunset.
But the best time to view it is several hours after sunset, when Mars will appear higher in the sky.
Mars will still be visible after July and August, but each month it will shrink in apparent size as it travels farther from Earth in its orbit around the Sun.
On July 27th a total lunar eclipse will be visible in Australia, Asia, Africa, Europe and South America.
For those viewers, Mars will be right next to the eclipsing moon!
Next month will feature August's summer Perseids. It's not too soon to plan a dark sky getaway for the most popular meteor shower of the year!
Watch the full What’s Up for July Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Jupiter and Venus at sunset, Mars, Saturn and Vesta until dawn.
First up is Venus. It reaches its highest sunset altitude for the year this month and sets more than two hours after sunset.
You can't miss Jupiter, only a month after its opposition--when Earth was directly between Jupiter and the Sun.
The best time to observe Jupiter through a telescope is 10:30 p.m. at the beginning of the month and as soon as it's dark by the end of the month.
Just aim your binoculars at the bright planet for a view including the four Galilean moons. Or just enjoy Jupiter with your unaided eye!
Saturn is at opposition June 27th, when it and the Sun are on opposite sides of Earth. It rises at sunset and sets at sunrise. Great Saturn viewing will last several more months. The best views this month will be just after midnight.
All year, the rings have been tilted wide open--almost 26 degrees wide this month--giving us a great view of Saturn's distinctive rings.
The tilt offers us a view of the north polar region, so exquisitely imaged by the Cassini spacecraft.
Near Saturn, the brightest asteroid--Vesta--is so bright that it can be seen with your unaided eye. It will be visible for several months.
A detailed star chart will help you pick out the asteroid from the stars. The summer Milky way provides a glittery backdrop.
Finally, Mars grows dramatically in brightness and size this month and is visible by 10:30 p.m. by month end.
The best views are in the early morning hours. Earth's closest approach with Mars is only a month away. It's the closest Mars has been to us since 2003.
Watch the full What’s Up for June Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
You won't want to miss red Mars in the southern morning skies this month.
InSight, our first mission to explore Mars' deep interior, launches on May 5th with a launch window that begins at 4:05 a.m. PDT and lasts for two hours.
Some lucky viewers in central and southern California and even parts of the Mexican Pacific coast will get a chance to see the spacecraft launch with their unaided eyes AND its destination, Mars, at the same time.
Mars shines a little brighter than last month, as it approaches opposition on July 27th. That's when Mars and the Sun will be on opposite sides of the Earth. This will be Mars' closest approach to Earth since 2003!
Compare the planet's increases in brightness with your own eyes between now and July 27th.
The Eta Aquarid meteor shower will be washed out by the Moon this month, but if you are awake for the InSight launch anyway, have a look. This shower is better viewed from the southern hemisphere, but medium rates of 10 to 30 meteors per hour MAY be seen before dawn.
Of course, you could travel to the South Pacific to see the shower at its best!
There's no sharp peak to this shower--just several nights with good rates, centered on May 6th.
Jupiter reaches opposition on May 9th, heralding the best Jupiter-observing season, especially for mid-evening viewing. That's because the king of the planets rises at sunset and sets at dawn.
Wait a few hours after sunset, when Jupiter is higher in the sky, for the best views. If you viewed Jupiter last month, expect the view to be even better this month!
Watch the full What’s Up for May Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What do astronauts, microbes and plants all have in common? Each relies on DNA – essentially a computer code for living things – to grow and thrive. The microscopic size of DNA, however, can create some big challenges for studying it aboard the International Space Station.
Studying DNA in space could lead to a better understanding of microgravity’s impact on living organisms and could also offer ways to identify unknown microbes in spacecraft, humans and the deep space locations we hope to visit one day.
Most Earth-based molecular research equipment is large and requires significant amounts of power to run. Those are two characteristics that can be difficult to support aboard the station, so previous research samples requiring DNA amplification and sequencing had to be stored in space until they could be sent back to Earth aboard a cargo spacecraft, adding to the time required to get results.
However, all of that has changed in a few short years as we’ve worked to find new solutions for rapid in-flight molecular testing aboard the space station.
“We need[ed] to get machines to be compact, portable, robust, and independent of much power generation to allow for more agile testing in space,” NASA astronaut and molecular biologist Kate Rubins said in a 2016 downlink with the National Institutes of Health.
The result? An advanced suite of tabletop and palm-sized tools including MinION, miniPCR, and Wet-Lab-2, and more tools and processes on the horizon.
Space-based DNA testing took off in 2016 with the Biomolecule Sequencer.
Comprised of the MinION sequencer and a Surface Pro 3 tablet for analysis, the tool was used to sequence DNA in space for the first time with Rubins at the helm.
In 2017, that tool was used again for Genes in Space-3, as NASA astronaut Peggy Whitson collected and tested samples of microbial growth from around the station.
Alongside MinION, astronauts also tested miniPCR, a thermal cycler used to perform the polymerase chain reaction. Together these platforms provided the identification of unknown station microbes for the first time EVER from space.
This year, those testing capabilities translated into an even stronger portfolio of DNA-focused research for the orbiting laboratory’s fast-paced science schedule. For example, miniPCR is being used to test weakened immune systems and DNA alterations as part of a student-designed investigation known as Genes in Space-5.
The study hopes to reveal more about astronaut health and potential stress-related changes to DNA created by spaceflight. Additionally, WetLab-2 facility is a suite of tools aboard the station designed to process biological samples for real-time gene expression analysis.
More tools for filling out the complete molecular studies opportunities on the orbiting laboratory are heading to space soon.
“The mini revolution has begun,” said Sarah Wallace, our principal investigator for the upcoming Biomolecule Extraction and Sequencing Technology (BEST) investigation. “These are very small, efficient tools. We have a nicely equipped molecular lab on station and devices ideally sized for spaceflight.”
BEST is scheduled to launch to the station later this spring and will compare swab-to-sequencer testing of unknown microbes aboard the space station against current culture-based methods.
Fast, reliable sequencing and identification processes could keep explorers safer on missions into deep space. On Earth, these technologies may make genetic research more accessible, affordable and mobile.
To learn more about the science happening aboard the space station, follow @ISS_Research for daily updates. For opportunities to see the space station pass over your town, check out Spot the Station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Moon, Mars and Saturn form a pretty triangle in early April, the Lyrid Meteors are visible in late April, peaking high overhead on the 22nd.
You won't want to miss red Mars and golden Saturn in the south-southeast morning skies this month. Mars shines a little brighter than last month.
By the 7th, the Moon joins the pair. From a dark sky you may see some glow from the nearby Milky Way.
Midmonth, start looking for Lyrid meteors, which are active from April 14 through the 30th. They peak on the 22nd.
The Lyrids are one of the oldest known meteor showers and have been observed for 2,700 years. The first recorded sighting of a Lyrid meteor shower goes back to 687 BC by the Chinese. The pieces of space debris that interact with our atmosphere to create the Lyrids originate from comet C/1861 G1 Thatcher. Comet Thatcher was discovered on 5 April 1861 by A. E. Thatcher.
In the early morning sky, a patient observer will see up to more than a dozen meteors per hour in this medium-strength shower, with 18 meteors per hour calculated for the peak. U.S. observers should see good rates on the nights before and after this peak.
A bright first quarter moon plays havoc with sky conditions, marring most of the typically faint Lyrid meteors. But Lyra will be high overhead after the moon sets at midnight, so that's the best time to look for Lyrids.
Jupiter will also be visible in the night sky this month!
Through a telescope, Jupiter's clouds belts and zones are easy to see.
And watch the Great Red Spot transit--or cross--the visible (Earth-facing) disk of Jupiter every 8 hours.
Our Juno spacecraft continues to orbit this gas giant, too!
And Juno's JunoCam citizen science team is creating exciting images of Jupiter's features based on the latest spacecraft data.
Next month Jupiter is at opposition--when it rises at sunset, sets at sunrise, and offers great views for several months!
Watch the full What’s Up for April Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This month, at sunset, catch elusive Mercury, bright Venus, the Zodiacal Light, Mars, Saturn and Jupiter between midnight and dawn!
Both Venus and Mercury play the part of "evening stars" this month. At the beginning of the month they appear low on the western horizon.
The Moon itself joins the pair from March 18th through the 20th.
The Moon skims by the Pleiades star cluster and Taurus's bright red star Aldebaran on the next few evenings, March 21 through the 23rd.
Jupiter, king of the planets, rises just before midnight this month and earlier by month end.
Even through the smallest telescope or average binoculars, you should see the 4 Galilean moons, Europa, Io, Callisto and Ganymede.
The March morning sky offers dazzling views of Mars and Saturn all month long.
Through a telescope, you can almost make out some of the surface features on Mars.
Look a little farther into Mars' future and circle May 5th with a red marker. When our InSight spacecraft launches for its 6 month journey to the Red Planet, Mars will be easily visible to your unaided eye.
Keep watching Mars as it travels closer to Earth. It will be closest in late July, when the red planet will appear larger in apparent diameter than it has since 2003!
You are in for a real treat if you can get away to a dark sky location on a moonless night this month -- the Zodiacal Light and the Milky Way intersect!
The Zodiacal light is a faint triangular glow seen from a dark sky just after sunset in the spring or just before sunrise in the fall.
The more familiar Milky Way is one of the spiral arms of our galaxy.
What we're seeing is sunlight reflecting off dust grains that circle the Sun in the inner solar system. These dust grains journey across our sky in the ecliptic, the same plane as the Moon and the planets.
Watch the full What’s Up for March Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This month, in honor of Valentine's Day, we'll focus on celestial star pairs and constellation couples.
Let's look at some celestial pairs!
The constellations Perseus and Andromeda are easy to see high overhead this month.
According to lore, the warrior Perseus spotted a beautiful woman--Andromeda--chained to a seaside rock. After battling a sea serpent, he rescued her.
As a reward, her parents Cepheus and Cassiopeia allowed Perseus to marry Andromeda.
The great hunter Orion fell in love with seven sisters, the Pleiades, and pursued them for a long time. Eventually Zeus turned both Orion and the Pleiades into stars.
Orion is easy to find. Draw an imaginary line through his belt stars to the Pleiades, and watch him chase them across the sky forever.
A pair of star clusters is visible on February nights. The Perseus Double Cluster is high in the sky near Andromeda's parents Cepheus and Cassiopeia.
Through binoculars you can see dozens of stars in each cluster. Actually, there are more than 300 blue-white supergiant stars in each of the clusters.
There are some colorful star pairs, some visible just by looking up and some requiring a telescope. Gemini's twins, the brothers Pollux and Castor, are easy to see without aid.
Orion's westernmost, or right, knee, Rigel, has a faint companion. The companion, Rigel B, is 500 times fainter than the super-giant Rigel and is visible only with a telescope.
Orion's westernmost belt star, Mintaka, has a pretty companion. You'll need a telescope.
Finally, the moon pairs up with the Pleiades on the 22nd and with Pollux and Castor on the 26th.
Watch the full What’s Up for February Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This month the new year's first meteor shower fizzles, Mars meets Jupiter in the morning sky and the U.S. will enjoy a total lunar eclipse!
Most meteor showers radiate from recognizable constellations. Like the Leonids, Geminids and Orionids.
But the Quadrantids are meteors that appear to radiate from the location of the former Quadrans Muralis constellation, an area that's now part of the constellation Bootes.
The Quadrantids' peak lasts for just a few hours, and sadly, this year their timing coincides with a very bright, nearly full moon that will wash out most of the meteors.
You can look in any direction to see all the meteor showers. When you see one of these meteors, hold a shoestring along the path it followed. The shoestring will lead you back to the constellation containing the meteor’s origin.
On the morning of January 6th, look in the south-southeast sky 45 minutes before sunrise to see Jupiter and fainter Mars almost as close as last month's Jupiter and Venus close pairing.
Mars is only one-sixth the apparent diameter of Jupiter, but the two offer a great binocular and telescopic view with a pretty color contrast. They remain in each other's neighborhood from January 5th through the 8th.
Finally, to end the month, a great total lunar eclipse favors the western U.S., Alaska, and Hawaii and British Columbia on January 31st. Australia and the Pacific Ocean are well placed to see a major portion of the eclipse--if not all of it.
Watch the full What’s Up for January Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This month hosts the best meteor shower of the year and the brightest stars in familiar constellations.
The Geminds peak on the morning of the 14th, and are active from December 4th through the 17th. The peak lasts for a full 24 hours, meaning more worldwide meteor watchers will get to see this spectacle.
Expect to see up to 120 meteors per hour between midnight and 4 a.m. but only from a dark sky. You'll see fewer after moonrise at 3:30 a.m. local time.
In the southern hemisphere, you won't see as many, perhaps 10-20 per hour, because the radiant never rises above the horizon.
Take a moment to enjoy the circle of constellations and their brightest stars around Gemini this month.
Find yellow Capella in the constellation Auriga.
Next-going clockwise--at 1 o'clock find Taurus and bright reddish Aldebaran, plus the Pleiades.
At two, familiar Orion, with red Betelguese, blue-white Rigel, and the three famous belt stars in-between the two.
Next comes Leo, and its white lionhearted star, Regulus at 7 o'clock.
Another familiar constellation Ursa Major completes the view at 9 o'clock.
There's a second meteor shower in December, the Ursids, radiating from Ursa Minor, the Little Dipper. If December 22nd and the morning of December 23rd are clear where you are, have a look at the Little Dipper's bowl, and you might see about ten meteors per hour. Watch the full What’s Up for December Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This week, 10 things you need to know about this beautiful nighttime show and how to catch a front-row seat.
In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image Credit: NASA/Bill Ingalls
With very fast and bright meteors, Perseids (pronounced PURR-see-ids) frequently leave long "wakes" of light and color behind them as they streak through Earth's atmosphere. Perseids are one of the most plentiful showers, with between 50-100 meteors seen each hour, and occur with warm summer nighttime weather, allowing sky watchers to easily view them.
You can see the Perseids this year between now and Aug. 24, 2017, but mark your calendars for peak dates Aug. 12 and 13. This year, the waning gibbous moon rises about midnight local time, which will cut the expected rates in half this year (25 to 50 per hour at the peak from a very dark sky). But the Perseids are so bright and numerous that it should still be a good show.
The Perseids (and every meteor shower) are best viewed in the Northern Hemisphere between 11 p.m. - 3 a.m. Come prepared with a sleeping bag, blanket or lawn chair.
Find an area well away from city or street lights and set up where you're shadowed from the moon's glare. Face whatever direction you like, ideally the one unobstructed by trees, buildings or moonlight. Look up, taking in as much of the sky as possible. If you have a group, each person should look in different parts of the sky. After about 30 minutes in the dark, your eyes will adapt, and you'll begin to see fainter objects, including meteors. Be patient; the show will last until dawn, so you have plenty of time to catch a glimpse.
Pack a baseball cap and wear it sideways to cover any glare from the moon. The waning gibbous moon will block out many of the fainter meteors this year, but the Perseids are so bright and numerous that it should still be a good show.
Where do meteors come from? Some originate from leftover comet particles and bits of broken asteroids. When comets come around the sun, they leave a dusty trail behind them. Every year, Earth passes through these debris trails, which allows the bits to collide with our atmosphere and disintegrate to create fiery and colorful streaks in the sky. But the vast majority of meteors don't come from meteor showers—instead, they randomly fall all of the time.
The pieces of space debris that interact with our atmosphere to create the Perseids originate from Comet 109P/Swift-Tuttle. Swift-Tuttle takes 133 years to orbit the sun once, and Comet Swift-Tuttle last visited the inner solar system in 1992. Swift-Tuttle is a large comet: its nucleus is 16 miles (26 kilometers) across. This is almost twice the size of the object hypothesized to have wiped out the dinosaurs.
Comet Swift-Tuttle was discovered in 1862 by Lewis Swift and Horace Tuttle. In 1865, Giovanni Schiaparelli realized that this comet was the source of the Perseids.
The Perseids are known for fireballs, which are large explosions of light and color that last longer than an average meteor streak. Why? They originate from bigger particles of cometary material.
The point in the sky from which the Perseids appear to come from—also known as their radiant—is the constellation Perseus. But don't get confused: The constellation name only helps viewers figure out which shower they're viewing on a given night; it's not the source of the meteors (see #6 for that answer!).
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com