Experience Tumblr Like Never Before
I was looking for a way to unpurple the sky and I found a black hole spewing astral dust within the storm. I could reach into it unharmed because I was made of the same non-existence.
“The Traveller” | 2016 132 x 48 inches | black ink, acrylic, charcoal, paper roll, candles, headphones, mp3 player with sound accompaniment
Take a good look: this is the black hole at the center of our galaxy.
In the inset image, gas in the glowing orange ring surrounds the black hole's event horizon, a boundary from which nothing can escape. The ring is created by light bending in the intense gravity around Sagittarius A*, which has a mass some four million times greater than our Sun. This groundbreaking image of Sagittarius A* was taken by the Event Horizon Telescope team with data from telescopes around the world. After the EHT's iconic image of M87*, released in 2019, this is only the second time a supermassive black hole has been directly observed with its shadow.
The wider look at the space around Sagittarius A* includes data contributed by several NASA missions. The orange specks and purple tendrils were captured in infrared light by the Hubble Space Telescope, and the blue clouds represent data from our orbiting Chandra X-ray Observatory.
Fall in to the whole story: https://www.nasa.gov/mission_pages/chandra/images/sagittarius-a-nasa-telescopes-support-event-horizon-telescope-in-studying-milky-ways.html
Make sure to follow us on Tumblr for your regular dose of space!
CREDIT: X-ray: NASA/CXC/SAO; IR: NASA/HST/STScI. Inset: Radio (EHT Collaboration)
The universe is filled with billions upon billions of stars. Look up at the night sky, and you can see a small fraction of them, each appearing as a tiny pinprick of light against the inky blackness of space. But did you know there’s more to space than our eyes can see? To observe the hidden cosmos, we use telescopes that can see in the infrared. How do stars and planets form? How do black holes feast? How does matter escape galaxies? These are all questions we can begin to answer by exploring space in this wavelength of light. The infrared views captured by SOFIA, the world’s largest flying observatory, have helped us uncover mysterious objects and phenomena in our galaxy and beyond! The findings are changing our understanding of the way in which the universe works. Here are five cool scientific discoveries made by the mission.
SOFIA is a modified Boeing 747SP aircraft that allows astronomers to study the solar system and beyond in ways that are not possible with ground-based telescopes. Learn more about the mission: www.nasa.gov/sofia
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did you know our Milky Way galaxy is blowing bubbles? Two of them, each 25,000 light-years tall! They extend above and below the disk of the galaxy, like the two halves of an hourglass. We can’t see them with our own eyes because they’re only apparent in gamma-ray light, the highest-energy light in the universe.
We didn’t even know these humongous structures were smack in the middle of our galaxy until 2010. Scientists found them when they analyzed the first two years of data from NASA’s Fermi Gamma-ray Space Telescope. They dubbed them the “Fermi bubbles” and found that in addition to being really big and spread out, they seem to have well-defined edges. The bubbles’ shape and the light they give off led scientists to think they were created by a rapid release of energy. But by what? And when?
One possible explanation is that they could be leftovers from the last big meal eaten by the supermassive black hole at the center of our galaxy. This monster is more than 4 million times the mass of our own Sun. Scientists think it may have slurped up a big cloud of hydrogen between 6 and 9 million years ago and then burped jets of hot gas that we see in gamma rays and X-rays.
Another possible explanation is that the bubbles could be the remains of star formation. There are massive clusters of stars at very the center of the Milky Way — sometimes the stars are so closely packed they’re a million times more dense than in the outer suburb of the galaxy where we live. If there was a burst of star formation in this area a few million years ago, it could have created the surge of gas needed to in turn create the Fermi bubbles.
It took us until 2010 to see these Fermi bubbles because the sky is filled with a fog of other gamma rays that can obscure our view. This fog is created when particles moving near light speed bump into gas, dust, and light in the Milky Way. These collisions produce gamma rays, and scientists had to factor out the fog to unveil the bubbles.
Scientists continue to study the possible causes of these massive bubbles using the 10 years of data Fermi has collected so far. Fermi has also made many other exciting discoveries — like the the collision of superdense neutron stars and the nature of space-time. Learn more about Fermi and how we’ve been celebrating its first decade in space.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Just about every galaxy the size of our Milky Way (or bigger) has a supermassive black hole at its center. These objects are ginormous — hundreds of thousands to billions of times the mass of the Sun! Now, we know galaxies merge from time to time, so it follows that some of their black holes should combine too. But we haven’t seen a collision like that yet, and we don’t know exactly what it would look like.
A new simulation created on the Blue Waters supercomputer — which can do 13 quadrillion calculations per second, 3 million times faster than the average laptop — is helping scientists understand what kind of light would be produced by the gas around these systems as they spiral toward a merger.
The new simulation shows most of the light produced around these two black holes is UV or X-ray light. We can’t see those wavelengths with our own eyes, but many telescopes can. Models like this could tell the scientists what to look for.
You may have spotted the blank circular region between the two black holes. No, that’s not a third black hole. It’s a spot that wasn’t modeled in this version of the simulation. Future models will include the glowing gas passing between the black holes in that region, but the researchers need more processing power. The current version already required 46 days!
The supermassive black holes have some pretty nifty effects on the light created by the gas in the system. If you view the simulation from the side, you can see that their gravity bends light like a lens. When the black holes are lined up, you even get a double lens!
But what would the view be like from between two black holes? In the 360-degree video above, the system’s gas has been removed and the Gaia star catalog has been added to the background. If you watch the video in the YouTube app on your phone, you can moved the screen around to explore this extreme vista. Learn more about the new simulation here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Got basic questions about the James Webb Space Telescope and what amazing things we’ll learn from it? We’ve got your answers right here!
The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2021. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.
Our James Webb Space Telescope is a giant space telescope that observes infrared light. Rather than a replacement for the Hubble Space Telescope, it’s a scientific successor that will complement and extend its discoveries.
Being able to see longer wavelengths of light than Hubble and having greatly improved sensitivity will let Webb look further back in time to see the first galaxies that formed in the early universe, and to peer inside dust clouds where stars and planetary systems are forming today.
We have yet to observe the era of our universe’s history when galaxies began to form.
We have a lot to learn about how galaxies got supermassive black holes in their centers, and we don't really know whether the black holes caused the galaxies to form or vice versa.
We can't see inside dust clouds with high resolution, where stars and planets are being born nearby, but Webb will be able to do just that.
We don't know how many planetary systems might be hospitable to life, but Webb could tell whether some Earth-like planets have enough water to have oceans.
We don't know much about dark matter or dark energy, but we expect to learn more about where the dark matter is now, and we hope to learn the history of the acceleration of the universe that we attribute to dark energy.
And then, there are the surprises we can't imagine!
By viewing the universe at infrared wavelengths with such sensitivity, Webb will show us things never before seen by any other telescope. For example, it is only at infrared wavelengths that we can see the first stars and galaxies forming after the Big Bang.
And it is with infrared light that we can see stars and planetary systems forming inside clouds of dust that are opaque to visible light, such as in the above visible and infrared light comparison image of the Carina Nebula.
YES, Webb will take amazing pictures! We are going to be looking at things we've never seen before and looking at things we have seen before in completely new ways.
The beauty and quality of an astronomical image depends on two things: the sharpness and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble.
Additionally Webb can see orange and red visible light. Webb images will be different, but just as beautiful as Hubble's. Above, there is another comparison of infrared and visible light Hubble images, this time of the Monkey Head Nebula.
The first targets for Webb will be determined through a process similar to that used for the Hubble Space Telescope and will involve our experts, the European Space Agency (ESA), the Canadian Space Agency (CSA), and scientific community participants.
The first engineering target will come before the first science target and will be used to align the mirror segments and focus the telescope. That will probably be a relatively bright star or possibly a star field.
Webb is designed to look deeper into space to see the earliest stars and galaxies that formed in the universe and to look deep into nearby dust clouds to study the formation of stars and planets.
In order to do this, Webb has a much larger primary mirror than Hubble (2.5 times larger in diameter, or about 6 times larger in area), giving it more light-gathering power. It also will have infrared instruments with longer wavelength coverage and greatly improved sensitivity than Hubble.
Finally, Webb will operate much farther from Earth, maintaining its extremely cold operating temperature, stable pointing and higher observing efficiency than with the Earth-orbiting Hubble.
Webb will be able to tell us the composition of the atmospheres of planets outside our solar system, aka exoplanets. It will observe planetary atmospheres through the transit technique. A transit is when a planet moves across the disc of its parent star.
Webb will also carry coronographs to enable photography of exoplanets (planets outside our solar system) near bright stars (if they are big and bright and far from the star), but they will be only "dots," not grand panoramas. Coronographs block the bright light of stars, which could hide nearby objects like exoplanets.
Consider how far away exoplanets are from us, and how small they are by comparison to this distance! We didn’t even know what Pluto really looked like until we were able to send an observatory to fly right near it in 2015, and Pluto is in our own solar system!
Yes! Webb will be able to observe the planets at or beyond the orbit of Mars, satellites, comets, asteroids and objects in the distant, icy Kuiper Belt.
Many important molecules, ices and minerals have strong characteristic signatures at the wavelengths Webb can observe.
Webb will also monitor the weather of planets and their moons.
Because the telescope and instruments have to be kept cold, Webb’s protective sunshield will block the inner solar system from view. This means that the Sun, Earth, Moon, Mercury, and Venus, and of course Sun-grazing comets and many known near-Earth objects cannot be observed.
Webb will be able to see what the universe looked like around a quarter of a billion years (possibly back to 100 million years) after the Big Bang, when the first stars and galaxies started to form.
Webb will launch in 2021 from French Guiana on a European Space Agency Ariane 5 rocket.
Webb’s mission lifetime after launch is designed to be at least 5-1/2 years, and could last longer than 10 years. The lifetime is limited by the amount of fuel used for maintaining the orbit, and by the possibility that Webb’s components will degrade over time in the harsh environment of space.
Looking for some more in-depth FAQs? You can find them HERE.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
IMAGE CREDITS Carina Nebula: ESO/T. Preibisch Monkey Head Nebula: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and J. Hester
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In Hollywood blockbusters, explosions and eruptions are often among the stars of the show. In space, explosions, eruptions and twinkling of actual stars are a focus for scientists who hope to better understand their births, lives, deaths and how they interact with their surroundings. Spend some of your Fourth of July taking a look at these celestial phenomenon:
Credit: NASA/Chandra X-ray Observatory
This object became a sensation in the astronomical community when a team of researchers pointed at it with our Chandra X-ray Observatory telescope in 1901, noting that it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite it as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.
Credit: NASA/Hubble Space Telescope
The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display. The sparkling centerpiece is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground located 20,000 light-years away from Earth in the constellation Carina.
Credit: NASA/THEMIS/Sebastian Saarloos
Sometimes during solar magnetic events, solar explosions hurl clouds of magnetized particles into space. Traveling more than a million miles per hour, these coronal mass ejections, or CMEs, made up of hot material called plasma take up to three days to reach Earth. Spacecraft and satellites in the path of CMEs can experience glitches as these plasma clouds pass by. In near-Earth space, magnetic reconnection incites explosions of energy driving charged solar particles to collide with atoms in Earth’s upper atmosphere. We see these collisions near Earth’s polar regions as the aurora. Three spacecraft from our Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, observed these outbursts known as substorms.
Credit: NASA/Hubble Space Telescope//ESA/STScI
Every galaxy has a black hole at its center. Usually they are quiet, without gas accretions, like the one in our Milky Way. But if a star creeps too close to the black hole, the gravitational tides can rip away the star’s gaseous matter. Like water spinning around a drain, the gas swirls into a disk around the black hole at such speeds that it heats to millions of degrees. As an inner ring of gas spins into the black hole, gas particles shoot outward from the black hole’s polar regions. Like bullets shot from a rifle, they zoom through the jets at velocities close to the speed of light. Astronomers using our Hubble Space Telescope observed correlations between supermassive black holes and an event similar to tidal disruption, pictured above in the Centaurus A galaxy.
Credit: NASA/Hubble Space Telescope/ESA
Supernovae can occur one of two ways. The first occurs when a white dwarf—the remains of a dead star—passes so close to a living star that its matter leaks into the white dwarf. This causes a catastrophic explosion. However most people understand supernovae as the death of a massive star. When the star runs out of fuel toward the end of its life, the gravity at its heart sucks the surrounding mass into its center. At the turn of the 19th century, the binary star system Eta Carinae was faint and undistinguished. Our Hubble Telescope captured this image of Eta Carinae, binary star system. The larger of the two stars in the Eta Carinae system is a huge and unstable star that is nearing the end of its life, and the event that the 19th century astronomers observed was a stellar near-death experience. Scientists call these outbursts supernova impostor events, because they appear similar to supernovae but stop just short of destroying their star.
Credit: NASA/GSFC/SDO
Extremely energetic objects permeate the universe. But close to home, the Sun produces its own dazzling lightshow, producing the largest explosions in our solar system and driving powerful solar storms.. When solar activity contorts and realigns the Sun’s magnetic fields, vast amounts of energy can be driven into space. This phenomenon can create a sudden flash of light—a solar flare.The above picture features a filament eruption on the Sun, accompanied by solar flares captured by our Solar Dynamics Observatory.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Instagram page has over 2,200 images and is lucky enough to be followed by more than 29 million fans.
What images and videos were your favorite from this past year? Great question, and one we asked ourselves too!
What happens when two supermassive black holes collide? Until last year, we weren’t quite sure. Gravitational waves! With 834,169 likes, this image is our 10th most liked of 2017.
European astronaut Paolo Nespoli (@Astro_Paolo) shared this image on social media of "Southern #Italy and Sicily framed by one of our Cupola windows" aboard the International Space Station. This image ranks #9 for 2017 with 847,365 likes.
For our 5th annual #BlackHoleFriday we’ll share awesome images and facts about black holes! A black hole is a place in space where gravity pulls so much that even light cannot get out. With 916,247 likes, this picture ranks #8 for 2017.
Did you know that stellar explosions and their remains--“supernova remnants”--are a source of chemical elements essential for life here on Earth? A new Chandra X-ray Observatory image captures the location of several vital elements like silicon (red), sulfur (yellow), calcium (green) and iron (purple), located on Cassiopeia A--a supernova remnant ~11,000 light years from Earth. This image ranks #7 for 2017 with 943,806 likes.
Jupiter, you’re bluetiful 💙 ! Churning swirls of Jupiter’s clouds are seen in striking shades of blue in this new view taken by our Juno spacecraft. This image ranks as our sixth most liked Instagram post of 2017 with 990,944 likes.
An interstellar visitor…scientists have confirmed that an intriguing asteroid that zipped through our solar system in October is the first confirmed object from another star! Observations suggest that this unusual object had been wandering through the Milky Way, unattached to any star system, for hundreds of millions of years before its chance encounter with our star system. With 1,015,721 likes, this image ranks #5 for 2017.
Space station supermoon. This composite image made from six frames shows the International Space Station, with a crew of six onboard, as it transits the Moon at roughly five miles per second on Dec. 2. This image ranks #4 for 2017 with 1,037,520 likes.
A post shared by NASA (@nasa) on Dec 20, 2017 at 2:56pm PST
The beautiful space between Earth and the International Space Station was immortalized by NASA astronaut Mark Vande Hei while orbiting 250 miles above the planet we call home. This majestic image ranks #3 for 2017 with 1,042,403 likes.
A post shared by NASA (@nasa) on Aug 21, 2017 at 2:03pm PDT
Today, the Sun disappeared, seemingly swallowed by our Moon–at least for a while. The August 21 solar eclipse cut through a swath of North America from coast to coast and those along the path of totality, that is where the Moon completely covered the Sun, were faced with a sight unseen in the U.S. in 99 years. Which might have something to do with this image ranking #2 for 2017 with 1,144,503 likes.
A post shared by NASA (@nasa) on Aug 21, 2017 at 3:57pm PDT
Behold! This progression of the partial solar eclipse took place over Ross Lake, in Northern Cascades National Park, Washington on Monday, Aug. 21, 2017.
This photo was our #1 image of 2017 with 1,471,114 likes!
Do you want to get amazing images of Earth from space, see distant galaxies and more on Instagram? Of course you do! Follow us: https://www.instagram.com/nasa/
*Posts and rankings are were taken as of Dec. 28, 2017.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
When it comes to galaxies, our home, the Milky Way, is rather neat and orderly. Other galaxies can be much more chaotic. For example, the Markarian 573 galaxy has a black hole at its center which is spewing beams of light in opposite directions, giving its inner regions more of an hourglass shape.
Our scientists have long been fascinated by this unusual structure, seen above in optical light from the Hubble Space Telescope. Now their search has taken them deeper than ever — all the way into the super-sized black hole at the center of one galaxy.
So, what do we think is going on? When the black hole gobbles up matter, it releases a form of high-energy light called radiation (particularly in the form of X-rays), causing abnormal patterns in the flow of gas.
Let’s take a closer look.
Meet Markarian 573, the galaxy at the center of this image from the Sloan Digital Sky Survey, located about 240 million light-years away from Earth in the constellation Cetus. It’s the galaxy’s odd structure and the unusual motions of its components that inspire our scientists to study it.
As is the case with other so-called active galaxies, the ginormous black hole at the center of Markarian 573 likes to eat stuff. A thick ring of dust and gas accumulates around it, forming a doughnut. This ring only permits light to escape the black hole in two cone-shaped regions within the flat plane of the galaxy — and that’s what creates the hourglass, as shown in the illustration above.
Zooming out, we can see the two cones of emission (shown in gold in the animation above) spill into the galaxy's spiral arms (blue). As the galaxy rotates, gas clouds in the arms sweep through this radiation, which makes them light up so our scientists can track their movements from Earth.
What happens next depends on how close the gas is to the black hole. Gas that’s about 2,500 light-years from the black hole picks up speed and streams outward (shown as darker red and blue arrows). Gas that’s farther from the black hole also becomes ionized, but is not driven away and continues its motion around the galaxy as before.
Here is an actual snapshot of the inner region of Markarian 573, combining X-ray data (blue) from our Chandra X-ray Observatory and radio observations (purple) from the Karl G. Jansky Very Large Array in New Mexico with a visible light image (gold) from our Hubble Space Telescope. Given its strange appearance, we’re left to wonder: what other funky shapes might far-off galaxies take?
For more information about the bizarre structure of Markarian 573, visit http://svs.gsfc.nasa.gov/12657
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s Black Friday, but for us, it’s the annual Black Hole Friday! Today, we’ll post awesome images and information about black holes.
A black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space…sort of like all of those shoppers trying to fit into the department stores today.
Because no light can get out, people can’t see black holes. They are invisible. Space telescopes with special tools can help find black holes (sort of how those websites help you find shopping deals).
How big are black holes? Black holes can be big or small…just like the lines in all of the stores today. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain! Mass is the amount of matter, or “stuff”, in an object.
So how do black holes form? Scientists think the smallest black holes formed when the universe began. Stellar black holes are made when the center of a very big star falls upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space. Scientists think supermassive black holes were made at the same time as the galaxy they are in.
For more fun facts and information about black holes, be sure to follow us on social media.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com