Experience Tumblr Like Never Before
Light as Air: One of my original creations from a few years back. The inspiration came from a mixture of the elements light and air.
Day five of inktober 🎃 birds 🦅
glory or wisdom? love or power? violin or piano? fire or water? air or earth? forest or river? black or white? left or right? heads or tails? theatre or cinema? give or take? dawn or dusk? gold or silver? art or music? morning or night? venus or mercury?
I was listening to Luminary by Joel Sunny when writing this. And saw the quote from ACOMAF.
-- I have always felt connected to the elements, each one in its own different way. But as the days go by, its switches from time to time. I think you feel most connected to the element that you needed at that time. Maybe not the one that you felt like you were. As there are always checks and balances, whether you believe that or not is up to you. But it's what I always have believed.
While I never felt fire as much, it came with the burning passion. The desire to protect those I love, to be fully of fury and love. Contrasting but complementing the watery movement, the fire would stay strong to its path and burn anyone that got in its way, but it also gave off the homey vibes. The warmth on a cold autumn night. The laughter of fire and comfort, a light inside of the darkness, a spark of hope that something was still alive.
Ice has always been tricky. I could feel it in my veins when fear and panic come through. When I am so cold I just want to sleep. But it has its own creative side. Where each snowflake is so beautiful but different from the rest. Where the fun of playing in something so soft and while it might feel like a hundred miles away, imagine a little shop full of elves making toys. Of Jack Frost nipping at your nose, the Guardian of Fun. Of Santa and all of his wonders. Of the amazing designs that frost or snow can create.
Even then, I feel that jolt of lightning come through me at times. When I would touch an object and feel the electricity spark onto me. Where I would imagine it hopping from line to line, filling me with the energy to take part in the activities around me. Seeing that spark of mischievous talent lying in wait. For the right person or moment to set it off. For it to get people excited. To get them moving.
But even then I was never drawn to those elements as much as I thought. They would tickle the back of my mind, letting me know they were there, but not as much as the others did.
At first I thought it was earth, strong and steadfast. Willing to be stand the test of time without ever moving an inch. The leader of the group and the one everyone uses as a pillar of support.
Then I thought it was Water. Constantly moving, shifting and flowing. Blue as the sky and the waves it creates. Powerful but calm, the common sayings of "the calm before the storm" or "There is strength beneath the sea." It was healing and allowed me to follow my own path, and conform to whatever I needed to be at the time. Be a force to be reckoned with.
Next was Air or Wind, whichever people see fit to call it, but I see them as one in the same. I see wind as a presence that gives life to everything. That it's a moving force that cannot be seen, but everyone knows that it is there. That it can be as strong as a hurricane, or spinning as fast a tornado, be as light a breeze and warm or cold when it needs to be. That there is nothing it is attached to, but everything is attached to it. That it is free to do how it pleases, but never once asks for more.
And then comes the Stars, the space between our world and the next. It has drawn me to it in the past while. Lending both mystery and wonder. Darkness and light. Curiosity and adventure. It has this appeal to it that I can't quite explain. As if it has everything that the elements are, but nothing that they are at the same time. For stars can burn as hot as fire, flare and flow like water, turn ice cold when they die. They are steadfast rocks, constant in our sky, lighting up the world with their glow. And even though they are deep in space, their light acts as if it is being blown in the wind, and imaginary force. The stars are peace, they are hope, they are in the darkness and have decided to reflect the light. People wish upon those stars. They send their love and hopes and dreams, in the prayer that they are not ruined. They look up to the stars with stories from old, of brave men and women that represent the constellations above. Who we can learn from their triumphs and their failures.
All of the elements have a place in my heart. In my body. And while it might be hard for people to understand, each element is connected in its own way. Just like each and everyone of us is connected. We just can't see it yet.
Avatar the last airbender One of my favorite shows. (Of course i own all the seasons) To be honest my favorite characters are Zuko an toff. But ty lee was babe But out of all the elements I would be earth or fire. 🌍🔥
@anime-and-sometimes-other-stuff for more animation/cinema content.
Last year, Godzilla made its way across the Atlantic Ocean. No, it wasn’t a giant lizard monster, but a cloud of dust so large it could be seen from a million miles away in space.
The plume of dust blowing from the Sahara Desert broke records and was nicknamed the “Godzilla plume.”
This year, another massive dust plume is traveling across the Atlantic.
The transport of dust from the Sahara to the Americas isn’t unusual: every year, winds pick up more than 180 million tons of dust particles from the Sahara Desert, move them over the African continent and carry them all the way across the Atlantic Ocean, depositing much of the dust along the way.
What’s remarkable about the past two years is the size of the plumes. Last year, the “Godzilla plume” was the largest dust storm in our two decades of observations.
Although this year’s plume has yet to complete its journey across the Atlantic, dust plumes from the Sahara often have important impacts on the Americas.
So, why do the dust plumes matter?
Before the Sahara was a desert, it was a lakebed, where nutrients like phosphorous and iron were deposited before the lake dried up. As a result, winds pick up these nutrients in the dust plumes. Some of these nutrients get deposited in the Atlantic Ocean, feeding marine life – iron, for example, is critical for marine life. Phosphorus is also a much-needed nutrient that fertilizes vegetation in the Amazon rainforest. The amount of phosphorus deposited by Saharan dust plumes into the Amazon every year – around 22,000 tons – is roughly equivalent to the amount that gets removed from the rainforest’s soil by weather conditions. In other words, long term, the dust plumes provide an essential nutrient to the Amazon’s vegetation.
Both the dust plumes themselves and the conditions associated with them can also influence the formation of tropical storms during hurricane season. As climate change appears to be strengthening the strongest storms, understanding the relationship between dust plumes and hurricanes has only grown more important.
The dust plumes can carry microbes that can be deadly and can worsen air quality, creating potentially dangerous conditions for sensitive populations. The iron in the plumes can also kick off blooms of toxic algae off the coast of Florida that result from the increase in nutrients in the ocean.
What comes next for Saharan dust? We’re still looking into it!
Some research suggests dust plumes will intensify with higher temperatures and dryer conditions, creating more loose dust to be picked up. However, other research shows that rising ocean temperatures and changing wind speeds would result in more rainfall and vegetation in the desert, reducing how much dust blows across the Atlantic. Make sure to follow us on Tumblr for your regular dose of space!
Flying directly through thick plumes of smoke may seem more harrowing than exciting. But for members of the CAMP2Ex science team, the chance to fly a P-3 Orion straight through clouds of smoke billowing off fires from Borneo this week was too good an opportunity to pass up.
CAMP2Ex stands for the Cloud, Aerosol and Monsoon Processes in the Philippines Experiment. The 2, by the way, is silent.
It’s a field campaign based out of Clark in the Philippines, flying our P-3, a Learjet and collaborating with researchers on the research vessel Sally Ride to understand how tiny particles in the atmosphere affect cloud formations and monsoon season.
The tiny aerosol particles we’re looking at don’t just come from smoke. Aerosol particles also come from pollution, billowing dust and sea salt from the ocean. They can have an outsized effect on weather and climate, seeding clouds that bring rain and altering how the atmosphere absorbs the Sun’s heat.
The smoke we were flying Monday came from peat fires, burning through the soil. That’s pretty unusual — the last time Borneo had these kind of fires was in 2015, so it was a rare opportunity to sample the chemistry of the smoke and find out what’s mixing with the air.
The planes are loaded with instruments to learn more about aerosol particles and the makeup of clouds, like this high-speed camera that captures images of the particles in flight.
One instrument on the plane collects droplets of cloud water as the plane flies through them, and on the ground, we test how acidic and what kind of particles form the cloud drops.
All of these measurements are tools in improving our understanding of the interaction between particles in the air and clouds, rainfall and precipitation in the Pacific Ocean.
Learn more about the CAMP2Ex field campaign, here!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Whether it's crops, forests or phytoplankton blooms in the ocean, our scientists are tracking life on Earth. Just as satellites help researchers study the atmosphere, rainfall and other physical characteristics of the planet, the ever-improving view from above allows them to study Earth's interconnected life.
1. Life on Earth, From Space
While we (NASA) began monitoring life on land in the 1970s with the Landsat satellites, this fall marks 20 years since we've continuously observed all the plant life at the surface of both the land and ocean. The above animation captures the entirety of two decades of observations.
2. Watching the World Breathe
With the right tools, we can see Earth breathe. With early weather satellite data in the 1970s and '80s, NASA Goddard scientist Compton Tucker was able to see plants' greening and die-back from space. He developed a way of comparing satellite data in two wavelengths.
When healthy plants are stocked with chlorophyll and ready to photosynthesize to make food (and absorb carbon dioxide), leaves absorb red light but reflect infrared light back into space. By comparing the ratio of red to infrared light, Tucker and his colleagues could quantify vegetation covering the land.
Expanding the study to the rest of the globe, the scientists could track rainy and dry seasons in Africa, see the springtime blooms in North America, and wildfires scorching forests worldwide.
3. Like Breathing? Thank Earth's Ocean
But land is only part of the story. The ocean is home to 95 percent of Earth's living space, covering 70 percent of the planet and stretching miles deep. At the base of the ocean's food web is phytoplankton - tiny plants that also undergo photosynthesis to turn nutrients and carbon dioxide into sugar and oxygen. Phytoplankton not only feed the rest of ocean life, they absorb carbon dioxide - and produce about half the oxygen we breathe.
In the Arctic Ocean, an explosion of phytoplankton indicates change. As seasonal sea ice melts, warming waters and more sunlight will trigger a sudden, massive phytoplankton bloom that feeds birds, sea lions and newly-hatched fish. But with warming atmospheric temperatures, that bloom is now happening several weeks earlier - before the animals are in place to take advantage of it.
4. Keeping an Eye on Crops
The "greenness" measurement that scientists use to measure forests and grasslands can also be used to monitor the health of agricultural fields. By the 1980s, food security analysts were approaching NASA to see how satellite images could help with the Famine Early Warning System to identify regions at risk - a partnership that continues today.
With rainfall estimates, vegetation measurements, as well as the recent addition of soil moisture information, our scientists can help organizations like USAID direct emergency help.
The view from space can also help improve agricultural practices. A winery in California, for example, uses individual pixels of Landsat data to determine when to irrigate and how much water to use.
5. Coming Soon to the International Space Station
A laser-based instrument being developed for the International Space Station will provide a unique 3-D view of Earth's forests. The instrument, called GEDI, will be the first to systematically probe the depths of the forests from space.
Another ISS instrument in development, ECOSTRESS, will study how effectively plants use water. That knowledge provided on a global scale from space will tell us "which plants are going to live or die in a future world of greater droughts," said Josh Fisher, a research scientist at NASA's Jet Propulsion Laboratory and science lead for ECOSTRESS.
6. Seeing Life, From the Microscopic to Multicellular
Scientists have used our vantage from space to study changes in animal habitats, track disease outbreaks, monitor forests and even help discover a new species. Bacteria, plants, land animals, sea creatures and birds reveal a changing world.
Our Black Marble image provides a unique view of human activity. Looking at trends in our lights at night, scientists can study how cities develop over time, how lighting and activity changes during certain seasons and holidays, and even aid emergency responders during power outages caused by natural disasters.
7. Earth as Analog and Proving Ground
Just as our Mars rovers were tested in Earth's deserts, the search for life on ocean moons in our solar system is being refined by experiments here. JPL research scientist Morgan Cable looks for life on the moons of Jupiter and Saturn. She cites satellite observations of Arctic and Antarctic ice fields that are informing the planning for a future mission to Europa, an icy moon of Jupiter.
The Earth observations help researchers find ways to date the origin of jumbled, chaotic ice. "When we visit Europa, we want to go to very young places, where material from that ocean is being expressed on the surface," she explained. "Anywhere like that, the chances of finding biomarkers goes up - if they're there."
8. Only One Living Planet
Today, we know of only one living planet: our own. The knowledge and tools NASA developed to study life here are among our greatest assets as we begin the search for life beyond Earth.
There are two main questions: With so many places to look, how can we home in on the places most likely to harbor life? What are the unmistakable signs of life - even if it comes in a form we don't fully understand? In this early phase of the search, "We have to go with the only kind of life we know," said Tony del Genio, co-lead of a new NASA interdisciplinary initiative to search for life on other worlds.
So, the focus is on liquid water. Even bacteria around deep-sea vents that don't need sunlight to live need water. That one necessity rules out many planets that are too close or too far from their stars for water to exist, or too far from us to tell. Our Galileo and Cassini missions revealed that some moons of Jupiter and Saturn are not the dead rocks astronomers had assumed, but appear to have some conditions needed for life beneath icy surfaces.
9. Looking for Life Beyond Our Solar System
In the exoplanet (planets outside our solar system that orbit another star) world, it's possible to calculate the range of distances for any star where orbiting planets could have liquid water. This is called the star's habitable zone. Astronomers have already located some habitable-zone planets, and research scientist Andrew Rushby of NASA Ames Research Center is researching ways to refine the search. "An alien would spot three planets in our solar system in the habitable zone [Earth, Mars and Venus]," Rushby said, "but we know that 67 percent of those planets are not inhabited."
He recently developed a model of Earth's carbon cycle and combined it with other tools to study which planets in habitable zones would be the best targets to look for life, considering probable tectonic activity and water cycles. He found that larger planets are more likely than smaller ones to have surface temperatures conducive to liquid water. Other exoplanet researchers are looking for rocky worlds, and biosignatures, the chemical signs of life.
10. You Can Learn a Lot from a Dot
When humans start collecting direct images of exoplanets, even the closest ones will appear as only a handful of pixels in the detector - something like the famous "blue dot" image of Earth from Saturn. What can we learn about life on these planets from a single dot?
Stephen Kane of the University of California, Riverside, has come up with a way to answer that question by using our EPIC camera on NOAA's DSCOVR satellite. "I'm taking these glorious pictures and collapsing them down to a single pixel or handful of pixels," Kane explained. He runs the light through a noise filter that attempts to simulate the interference expected from an exoplanet mission. By observing how the brightness of Earth changes when mostly land is in view compared with mostly water, Kane reverse-engineers Earth's rotation rate - something that has yet to be measured directly for exoplanets.
The most universal, most profound question about any unknown world is whether it harbors life. The quest to find life beyond Earth is just beginning, but it will be informed by the study of our own living planet.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Each month, we highlight a different research topic on the International Space Station. In June, our focus is Air and Space Science.
How is the space station being used to study space? Studies in fundamental physics address space, time, energy and the building blocks of matter. Recent astronomical observation and cosmological models strongly suggest that dark matter and dark energy, which are entities not directly observed and completely understood, dominate these interactions at the largest scales.
The space station provides a modern and well-equipped orbiting laboratory for a set of fundamental physics experiments with regimes and precision not achievable on the ground.
For example, the CALorimetric Electron Telescope (CALET) is an astrophysics mission that searches for signatures of dark matter (pictured above). It can observe discrete sources of high energy particle acceleration in our local region of the galaxy.
How is the space station contributing to aeronautics? It provides a long-duration spaceflight environment for conducting microgravity physical science research. This environment greatly reduces buoyancy-driven convection and sedimentation in fluids. By eliminating gravity, space station allows scientists to advance our knowledge in fluid physics and materials science that could lead to better designated air and space engines; stronger, lighter alloys; and combustion processes that can lead to more energy-efficient systems.
How is the space station used to study air? The Cloud-Aerosol Transport System (CATS) is a laster remote-sensing instrument, or lidar, that measures clouds and tiny aerosol particles in the atmosphere such as pollution, mineral dust and smoke. These atmospheric components play a critical part in understanding how human activities such as fossil fuel burning contribute to climate change.
The ISS-RapidScat is an instrument that monitors winds for climate research, weather predictions and hurricane monitoring from the International Space Station.
For more information on space station research, follow @ISS_Research on Twitter!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s Earth Day, and what better way to celebrate than to show you a glimpse of our various efforts to protect and understand our home planet.
We’re able to use the vantage point of space to improve our understanding of the most complex planet we’ve seen yet…EARTH! Our Earth-observing satellites, airborne research and field campaigns are designed to observe our planet’s dynamic systems – oceans, ice sheets, forests and atmosphere – and improve our ability to understand how our planet is changing.
KORUS-AQ (Korea U.S. - Air Quality)
Our KORUS-AQ airborne science experiment taking to the field in South Korea is part of a long-term, international project to take air quality observations from space to the next level and better inform decisions on how to protect the air we breathe. Field missions like KORUS-AQ provide opportunities to test and improve the instruments using simulators that measure above and below aircraft, while helping to infer what people breathe at the surface.
This campaign will assess air quality across urban, rural and coastal South Korea using observations from aircraft, ground sites, ships and satellites to test air quality models and remote sensing methods.
NAAMES (North Atlantic Aerosols and Marine Ecosystems Study)
Our NAAMES study takes to the sea and air in order to study how the world’s largest plankton bloom gives rise to small organic particles that influence clouds and climate. This study will collect data during ship and aircraft measurement campaigns and combine the data with continuous satellite and ocean sensor readings.
IceBridge
Operation IceBridge is our survey of polar ice, and is kicking off its eighth spring Arctic campaign. This mission has gathered large volumes of data on changes in the elevation of the ice sheet and its internal structure. It’s readings of the thickness of sea ice and its snow cover have helped scientists improve forecasts for the summer melt season and have enhanced the understanding of variations in ice thickness distribution from year to year.
GPM (Global Precipitation Measurement)
GPM is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. We launched this mission with the Japanese Aerospace Exploration Agency (JAXA) in 2014. GPM contributes to advancing our understanding of Earth’s water and energy cycles, improves forecasting of extreme events and extends current capabilities of using satellite precipitation information to directly benefit society.
Want to participate in Earth Day with us? Share on social media what you’re doing to celebrate and improve our home planet. We’ll be sharing aspects of a “day in the life” of our Earth science research. Use the tag #24Seven to join the conversation. Details: http://www.nasa.gov/press-release/nasa-announces-earth-day-24seven-social-media-event
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com