What’s Inside A ‘Dead’ Star?

What’s Inside a ‘Dead’ Star?

Matter makes up all the stuff we can see in the universe, from pencils to people to planets. But there’s still a lot we don’t understand about it! For example: How does matter work when it’s about to become a black hole? We can’t learn anything about matter after it becomes a black hole, because it’s hidden behind the event horizon, the point of no return. So we turn to something we can study – the incredibly dense matter inside a neutron star, the leftover of an exploded massive star that wasn’t quite big enough to turn into a black hole.

What’s Inside A ‘Dead’ Star?

Our Neutron star Interior Composition Explorer, or NICER, is an X-ray telescope perched on the International Space Station. NICER was designed to study and measure the sizes and masses of neutron stars to help us learn more about what might be going on in their mysterious cores.

What’s Inside A ‘Dead’ Star?

When a star many times the mass of our Sun runs out of fuel, it collapses under its own weight and then bursts into a supernova. What’s left behind depends on the star’s initial mass. Heavier stars (around 25 times the Sun’s mass or more) leave behind black holes. Lighter ones (between about eight and 25 times the Sun’s mass) leave behind neutron stars.

What’s Inside A ‘Dead’ Star?

Neutron stars pack more mass than the Sun into a sphere about as wide as New York City’s Manhattan Island is long. Just one teaspoon of neutron star matter would weigh as much as Mount Everest, the highest mountain on Earth!

What’s Inside A ‘Dead’ Star?

These objects have a lot of cool physics going on. They can spin faster than blender blades, and they have powerful magnetic fields. In fact, neutron stars are the strongest magnets in the universe! The magnetic fields can rip particles off the star’s surface and then smack them down on another part of the star. The constant bombardment creates hot spots at the magnetic poles. When the star rotates, the hot spots swing in and out of our view like the beams of a lighthouse.

What’s Inside A ‘Dead’ Star?

Neutron stars are so dense that they warp nearby space-time, like a bowling ball resting on a trampoline. The warping effect is so strong that it can redirect light from the star’s far side into our view. This has the odd effect of making the star look bigger than it really is!

What’s Inside A ‘Dead’ Star?

NICER uses all the cool physics happening on and around neutron stars to learn more about what’s happening inside the star, where matter lingers on the threshold of becoming a black hole. (We should mention that NICER also studies black holes!)

What’s Inside A ‘Dead’ Star?

Scientists think neutron stars are layered a bit like a golf ball. At the surface, there’s a really thin (just a couple centimeters high) atmosphere of hydrogen or helium. In the outer core, atoms have broken down into their building blocks – protons, neutrons, and electrons – and the immense pressure has squished most of the protons and electrons together to form a sea of mostly neutrons.

But what’s going on in the inner core? Physicists have lots of theories. In some traditional models, scientists suggested the stars were neutrons all the way down. Others proposed that neutrons break down into their own building blocks, called quarks. And then some suggest that those quarks could recombine to form new types of particles that aren’t neutrons!

What’s Inside A ‘Dead’ Star?

NICER is helping us figure things out by measuring the sizes and masses of neutron stars. Scientists use those numbers to calculate the stars’ density, which tells us how squeezable matter is!

Let’s say you have what scientists think of as a typical neutron star, one weighing about 1.4 times the Sun’s mass. If you measure the size of the star, and it’s big, then that might mean it contains more whole neutrons. If instead it’s small, then that might mean the neutrons have broken down into quarks. The tinier pieces can be packed together more tightly.

What’s Inside A ‘Dead’ Star?

NICER has now measured the sizes of two neutron stars, called PSR J0030+0451 and PSR J0740+6620, or J0030 and J0740 for short.

J0030 is about 1.4 times the Sun’s mass and 16 miles across. (It also taught us that neutron star hot spots might not always be where we thought.) J0740 is about 2.1 times the Sun’s mass and is also about 16 miles across. So J0740 has about 50% more mass than J0030 but is about the same size! Which tells us that the matter in neutron stars is less squeezable than some scientists predicted. (Remember, some physicists suggest that the added mass would crush all the neutrons and make a smaller star.) And J0740’s mass and size together challenge models where the star is neutrons all the way down.

What’s Inside A ‘Dead’ Star?

So what’s in the heart of a neutron star? We’re still not sure. Scientists will have to use NICER’s observations to develop new models, perhaps where the cores of neutron stars contain a mix of both neutrons and weirder matter, like quarks. We’ll have to keep measuring neutron stars to learn more!

Keep up with other exciting announcements about our universe by following NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

5 years ago

5 Ways NASA Technology is Shaping the Transportation of Tomorrow

We have always been in the transportation business, whether launching astronauts to the Moon or improving airplanes to make them fly faster and safer on less fuel. And whether directly – like more aerodynamic wings for passenger jets – or indirectly – like more comfortable driver seats in sedans – this is yet another way our innovations benefit the public.

Today, the world of transportation is on the brink of some big changes. Drones are poised to make more efficient deliveries, crop surveillance and even disaster relief efforts. Taxis may soon take to the skies as well. And self-driving cars are ever closer to reality.

As we release our latest edition of NASA Spinoff, our yearly publication that celebrates the many ways our technology helps people on Earth, let’s take a closer look at some ways we’re helping augment transportation — and keeping everyone on the roads and in the skies safe.

1. Better data for driverless navigation

image

If cars are going to drive themselves, they need to be able to “see” and assess the world around them, from other cars to pedestrians and bicyclists to a construction cone in the road. This is accomplished with the help of 3D cameras, or light detection and ranging (lidar), which sends out laser pulses and calculates where obstacles are by how long it takes that laser to bounce back.

But that, says engineer Farzin Amzajerdian at our Langley Research Center, is like building a 3D picture one pixel at a time. Instead, a new kind of lidar grabs a full array of pixels all at once. This “flash lidar” is faster and, because it has fewer moving parts, more reliable. It sailed through initial tests for possible use on a future Moon lander, and our partner has also sold the technology to a major car parts manufacturer, for autonomous cars. 

2. Opening the airspace for drones

image

Air traffic control has largely been a human operation so far, with people in control towers actively directing all 50,000 or so flights daily across the United States. But add in drones, and humans won’t be able to keep up: experts estimate there will soon be millions of aircraft in flight every day.

We’re helping automate and streamline flight control, working with the Federal Aviation Administration (FAA) and private companies to build the new technology needed to manage the anticipated challenges. Among other advances as a result, one company has built a platform used at airports, by air traffic controllers, and by drone operators around the world to more easily file flight plans, view the airspace, get clearance in restricted areas and more.

3. Software modeling for air taxis

image

It may sound like something from the Jetsons, but real people are imagining the technology needed to make flying taxis a thing. And they’re probably not going to look anything like the passenger planes that we’re used to.

But when you start with a totally new design, there are all sorts of variables, including how much it will weigh. When it comes to flying, weight is a critical factor. For one thing, a heavier craft needs more fuel, but more fuel makes it even heavier. And all that weight stresses the structure, which means reinforcing it (more weight again!). Do it wrong, and all these factors cycle endlessly until you have something too heavy to get off the ground.

New software, designed with our help, generates fast and accurate weight estimates of novel aircraft designs, helping engineers figure out what works and how to make it better. Among other customers? UberElevate, which is trying to take rideshares to the skies.

4. More nimble hand controls

image

We’ve even played a part in improving different kinds of joysticks, for everything from planes and video games, over the years. We had to because—especially in the early days of space travel—spacesuits were pretty unwieldy under the high g forces of launch and re-entry, so we needed to develop easy-to-use hand controls.

One former astronaut, Scott Parazynski, had acquired a wealth of experience training on and using NASA joysticks for jobs like maneuvering the International Space Station’s robotic arm. He realized similar technology could have even more of an impact on Earth. Parazynski, who is also a medical doctor, envisions improving robotic surgery with the new joystick he created; in the meantime, it’s already on the market for drones, making it easier than ever to use them to record aerial video, inspect a gas pipeline or even assess damage after a hurricane.

5. Helping farmers get the full picture

image

The “bird’s-eye view” is an expression for a reason: flying overhead provides a perspective you just can’t get with two feet planted on the ground. For the first time ever, we are going to get that bird’s eye view on Mars, and the same expertise that got us there is also giving farmers a new way to keep track of their crops.

The Mars Helicopter is poised to hitch a ride to the Red Planet with our latest rover, Perseverance, later this year. Designing it was a challenge: because there is so little air to provide lift on Mars, we needed something incredibly light (less than four pounds!) with large rotors that spin incredibly fast (nearly 3,000 times per minute).

We teamed up with a company we’ve worked with in the past on high-altitude, solar-powered, unmanned flyers. That company had something else in the works, using the same expertise: a drone equipped with two high-res cameras to capture images of crops as it flies overhead. The data from these images tells farmers where plants are thriving and where they’re not, informing them where they might need more (or less) water or fertilizer.

You can learn more about all these innovations, and dozens more, in the 2020 edition of NASA Spinoff. Read it online or request a limited quantity print copy and we’ll mail it to you!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

There’s Going to Be an Outburst!

Watch the Perseid Meteor Shower at Its Peak Tonight

image

The last time we had an outburst, that is a meteor shower with more meteors than usual, was in 2009. This year’s Perseid meteor shower is predicted to be just as spectacular starting tonight!

Plan to stay up late tonight or set your alarm clock for the wee morning hours to see this cosmic display of “shooting stars” light up the night sky. Known for it’s fast and bright meteors, tonight’s annual Perseid meteor shower is anticipated to be one of the best meteor viewing opportunities this year.

For stargazers experiencing cloudy or light-polluted skies, a live broadcast of the Perseid meteor shower will be available via Ustream overnight tonight and tomorrow, beginning at 10 p.m. EDT.

image

“Forecasters are predicting a Perseid outburst this year with double normal rates on the night of Aug. 11-12,” said Bill Cooke with NASA’s Meteoroid Environments Office in Huntsville, Alabama. “Under perfect conditions, rates could soar to 200 meteors per hour.”

Every Perseid meteor is a tiny piece of the comet Swift-Tuttle, which orbits the sun every 133 years. When Earth crosses paths with Swift-Tuttle’s debris, specks of comet-stuff hit Earth’s atmosphere and disintegrate in flashes of light. These meteors are called Perseids because they seem to fly out of the constellation Perseus.

Most years, Earth might graze the edge of Swift-Tuttle’s debris stream, where there’s less activity. Occasionally, though, Jupiter’s gravity tugs the huge network of dust trails closer, and Earth plows through closer to the middle, where there’s more material.

This is predicted be one of those years!

Learn more about the Perseids!

Make sure to follow us on Tumblr for your regular dose of space.


Tags
3 years ago

Thank you for joining! It’s time to find out how YOU can get involved with NASA as a student or send your experiments to the International Space Station.

One of our experts today is Hannah Johnson, the team lead of a student group sending their experiment to the space station! She is joined by Becky Kamas, our lead for STEM on Station activities for students.

Between 12-1 p.m. EDT today, our experts will talk about about designing an experiment for microgravity, working with NASA to launch it to space, how you can join this initiative, and more!

View all answers HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

10 Questions for Our Chief Scientist

NASA Chief Scientist…pretty cool title, right? The office represents all the scientific endeavors at NASA, ensuring they’re aligned with and fulfilling the administration’s science goals.  

image

After more than three years as Chief Scientist, Ellen Stofan is departing for new adventures. We caught up with her to ask 10 questions about her role and what she will miss most after she leaves the agency. Take a look…

image

1) What were some of your expectations coming in as NASA’s chief scientist?

When I started as Chief Scientist, all I knew is that I would be science advisor to the Administrator, Charlie Bolden, overseeing the agency’s science portfolio. What I did not realize at the time was the degree that I would be impressed by him. 

image

Charlie is an amazing leader who deeply cares about each and every person at this agency. He makes everyone feel valued. That is why NASA has just been voted by our employees for the fifth straight year as the Best Place to Work in the federal government!

2) What do you think it the next big thing for NASA science?

Looking across our science portfolio, I think the most exciting area, which actually connects everything we do, is the search for life beyond Earth. People have long wondered if we are alone, and we are now actually going to answer that question in the next few decades. We are exploring Mars, where it is very likely that life evolved at around the same time life evolved here on Earth. Conditions on Mars deteriorated after about a billion years, so life either went underground, or became extinct. It will likely take future Mars astronauts to find the best evidence of Mars life.

image

We also are planning to explore the ocean worlds of the outer solar system, like Europa, where we might find life in subsurface oceans. Beyond our solar system, the thousands of planets discovered by the Kepler Space Telescope have made me very optimistic that we are close to finding an Earth 2.0—though that will take us a little longer.

3) NASA science rewrites textbooks all the time. What is something you've seen here that has the potential to occur in the future that will change the textbooks for kids of tomorrow?

For kids 16 and under today, for every day of their life, we have been living and working in space on board the International Space Station. Now we are ready to take that next step in the coming decade, to move humans beyond low-Earth orbit where we have been for such a long time, out to the vicinity of the moon and then on to Mars. 

image

These kids are the “Mars generation,” and the exploration of Mars will change our outlook in profound ways, from looking back at Earth -- that will just look like another star -- to finding evidence of life beyond Earth. So it will not just change science textbooks, it will change how we look at ourselves when we become a multi-planetary species.

4) Behind every pretty space image is a team of scientists who analyze all the data to make the discovery happen. What do you wish the public knew about the people and work that goes into each of those pretty pictures?

It really does take a team.  When I go out and talk to school kids, I tell them learning how to be a good member of a team is so important in life. You need to learn to be a leader and a follower, and above all a listener. Our teams at NASA are becoming more and more diverse, which is incredibly important. If everyone looks the same and comes from the same background, they are likely to approach problems the same way. And when you are trying to do tough things -- from addressing climate change to sending humans to Mars -- you need the best team, which means a diverse team.

10 Questions For Our Chief Scientist

5) We have a lot of opportunities for citizen science. What’s one opportunity you wish everyone knew about that they could get involved with at NASA?

Go to www.nasa.gov/solve where you can find all kinds of great opportunities to join us at NASA in searching for planets around other stars, exploring Mars, helping us gather data about this planet, and tackling technology challenges. We really are stronger together, and getting the public involved in what we do is helping us get more good science every day. Even more importantly, it lets people know that science is fun!

image

6) What changes did you make at the agency while you were there?

As Chief Scientist, I got to work on a lot of fun challenges, from our strategy on how to get humans to Mars, to learning about and promoting the research we do every day on the International Space Station. But one of the things that I am most proud of is that, working with my team, NASA now collects voluntary demographic data on all of our grant proposals. Implicit or unconscious bias is all around us; we may act on deep-seated biases that we don’t even know we have. The first step in dealing with bias is seeing if you have a problem, and that is what the data collection will tell us.

7) You worked a lot with kids as the agency’s Chief Scientist. How important do you feel STEM education is for NASA?

We need the next generation of scientists, doctors, computer programmers, technologists and engineers, and NASA provides the inspiration and hands-on activities that help get kids interested in science. Because of climate change, we are facing rising sea levels, changing patterns of agriculture, and changing weather. We need good engineers and scientists to help us mitigate the effects of climate change and reduce carbon emissions.

image

On top of that, we live in a society that is dependent on technology; I don’t think most of us can go very long without checking our smartphones. But as technology becomes more complex, we need everyone in society to have at least a basic understanding of it, and that’s where the importance of STEM education comes in. We are ALL consumers of science and technology. We all need to be informed consumers.

8) What solar system destination are you still most excited/eager for NASA to still go explore?

As a planetary geologist, I am most excited by one of the ocean worlds of the outer solar system. Titan, one of Saturn’s moons, is an amazing little world where it rains, and the liquid forms rivers, lakes and seas. But this liquid is actually liquid methane and ethane --basically gasoline, rather than water -- due to the extremely cold temperatures out by Saturn. 

image

Titan is an excellent place to explore to help us better understand how oceans and atmospheres interact, and maybe even understand more about the limits of life. We think water is critical to the evolution of life, but Titan may tell us that having a liquid is the most important factor.

9) What will you miss most?

It’s the people of NASA whom I will miss the most. Everyone I work with is so committed to the mission of this agency—pushing back the frontiers of science and technology to accomplish great things for the nation. NASA represents the best of this country. We demonstrate that with hard work and determination, we can explore the universe, our galaxy, our solar system and our home planet. 

image

Our partnerships with other space agencies from around the world and with the private sector here have shown me that great teams accomplish great things. I like to say that NASA is the keeper of the future—we don’t just wait for the future to happen. We work to create it every day.

10) In your opinion, after seeing everything you've seen here, why should people care about the science at NASA?

At NASA, we gather the data to help answer the most fundamental and profound questions: Where did we come from? How does our planet and our universe work? What is the fate of our planet? It is only by exploring, by making measurements, by answering scientific questions that we can move forward as a society. And in doing so, we push technology and engineering in ways that benefit us every day right here on Earth. 

image

NASA makes measurements that show how the sea level is rising, how Arctic ice is melting, and how weather patterns are changing. We also gather data to help farmers grow more crops using less water, help understand our water resources, and do the research to improve forecasting. These data keep us secure and improve the quality of life on Earth every day.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Another Station Upgrade:

Spacewalkers Jeff Williams and Kate Rubins to install new TV cameras 

On Thursday, Sept. 1, U.S. astronauts Jeff Williams and Kate Rubins will conduct the station’s 195th American spacewalk. As part of their activities, the pair will install the first of several enhanced high-definition television cameras that will monitor activities outside the station, including the comings and goings of visiting cargo and crew vehicles

image

Working on the station’s backbone, or truss, Williams and Rubins will retract a thermal radiator that is part of the station’s cooling system. 

image

As was the case for their first spacewalk together on Aug. 19, Williams will be designated as extravehicular crew member 1 (EV1), wearing a spacesuit with a red stripe, while Rubins will be EV2, wearing a suit with no stripes.

Watch LIVE!

Coverage of the spacewalk begins at 6:30 a.m. EDT on Thursday, Sept. 1; with the spacewalk scheduled to begin at 8:05 a.m. EDT. Stream live online HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Flying Observatory Has Big Plans for New Zealand

image

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including the atmospheres of Pluto and Jupiter), nearby planetary systems, galaxies, black holes and complex molecules in space.

image

Flying South

Usually based in California, SOFIA and its team are returning to the Southern Hemisphere to study objects that aren't visible from the Northern Hemisphere and to take advantage of the long winter nights. The team operates from Christchurch, New Zealand, regularly between June and August and continues with more big plans for this year.

Flying Observatory Has Big Plans For New Zealand

Working with New Horizons 

Our SOFIA and New Horizons teams are working together again, to learn more about the next object that the New Horizons spacecraft will fly past, Kuiper Belt Object 2014 MU69, or MU69. This will be the farthest object ever encountered by any spacecraft, but little is known about it. Our team on SOFIA will be searching for possible debris around MU69 that could damage the spacecraft and will measure its size, helping the New Horizons team plan their next flyby.

Flying Observatory Has Big Plans For New Zealand

How We Study Distant Celestial Objects from Earth

Our SOFIA team will study MU69 on July 10, 2017, well before New Horizons arrives in January 2019. We can study this distant object from Earth by flying in the faint shadow that it will cast on Earth’s surface as it passes in front of a star. SOFIA will fly directly into the center of this shadow as it moves across the Pacific Ocean. From inside the shadow, the team onboard will study how the light from the star changes as MU69 passes in front it, allowing them to measure its size and to establish if there are any rings or debris around it. The observations will work in the same way that we studied Pluto using SOFIA two weeks before New Horizon’s Pluto Flyby in 2015.

image

Observing Other Galaxies

The Magellanic Clouds are neighboring galaxies to our own Milky Way Galaxy. We’re studying how stars are forming in the Large and Small Magellanic clouds to compare those processes to star formation in our own galaxy. The Magellanic Clouds are best observed from the southern hemisphere.

image

And Supernova 1987A

Inside the Large Magellanic Cloud is Supernova 1987A, the closest supernova explosion witnessed in almost 400 years. Our team onboard SOFIA will continue studying this supernova to better understand the material expanding out from it, which may become the building blocks of future stars and planets. Many of our telescopes have studied Supernova 1987A, including the Hubble Space Telescope, the Chandra X-ray Observatory and SOFIA’s predecessor, the Kuiper Airborne Observatory, but the instruments on SOFIA are the only tools we can use to study the debris around it at infrared wavelengths, to better understand characteristics of the dust that cannot be measured using other wavelengths of light.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

7 years ago

Solar System: Things to Know This Week

Almost every day, we receive a message from a spacecraft more than 10.6 billion miles (about 17 billion km) away.

At that unimaginable distance, it takes the radio signal almost 16 hours to arrive. The spacecraft is Voyager 2, which launched 40 years ago this month. It's still operating, sending back dispatches from the dark reaches well beyond the orbit of Pluto. Even now, scientists are still actively exploring the outer boundaries of the solar system using Voyager 2, decades after its "Grand Tour" of the giant planets Jupiter, Saturn, Uranus and Neptune revealed their splendors like never before. This week, we recall 10 highlights from one of the most epic voyages in human history.

1. A Journey of 10 Billion Miles Begins With the First Step

image

Voyager 2 set out from Earth on Aug. 20, 1977. Even though it launched before its twin spacecraft, Voyager 1, it carried the '2' moniker because mission planners knew its trajectory would bring it to Jupiter after Voyager 1's arrival there.

2. The Grand Tour

Voyager 2's trajectory was special because it took advantage of a rare orbital alignment to fly by all four gas giant planets: Jupiter, Saturn, Uranus and Neptune. It was the first, and so far the only, spacecraft to carry out a close-up reconnaissance of Uranus and Neptune.

3. Not-So-Gentle Giant

Voyager 2 flew by Jupiter in April 1979, capturing striking images of the planet's volcanic moon Io and its violent storms larger than the entire Earth.

4. Saturn's Not the Only One

image

Jupiter has its own ring system, and Voyager 2 provided the first pictures.

5. An Ocean Under Ice

During its Jupiter encounter, Voyager 2 obtained close-up looks at Jupiter's moon Europa, including linear cracks and other features which first led scientists to realize Europa probably hides a vast sea of liquid water beneath an icy shell, the first known world outside Earth that could have an ocean.

6. Ringworld, the Prequel

Voyager 2 zoomed through the Saturn system in August 1981. It saw hints of mysterious features that the Cassini mission would later reveal in stunning detail, including Enceladus, with its bright surface that suggested geologic activity, and Saturn's intriguing hexagonal jet stream.

7. Swiftly by a Tilted Planet

In January 1984, Voyager offered humanity its first detailed look at the seventh planet, Uranus, the only one tilted on its side relative to the Sun. Voyager images revealed 11 new moons, including Juliet, Puck, Cressida, Rosalind and Ophelia. The moon Miranda presented a bizarre landscape that left scientists debating its origins for years. Voyager also captured views of the planet's lacy rings, and found that it is the coldest in the solar system, at minus 353 degrees Fahrenheit (59 Kelvin).

8. In Neptune's Blue Realm

image

After picking up a gravitational speed boost at each previous planetary encounter, by the time Voyager reached Neptune it shot through the entire system of Neptunian rings and moons in a matter of hours. Voyager saw a titanic storm in Neptune's windy atmosphere, discovered new moons, and revealed active geysers erupting on Triton's frigid surface.

9. Postcards From the Edge

Although their cameras are no longer functioning, other key scientific instruments on board both Voyager spacecraft are still collecting data. Voyager 1 is exploring the boundary between the Sun's realm and interstellar space. Voyager 2 hasn't traveled quite as far. In September 2007, it crossed the termination shock (where the speed of the solar wind of charged particles drops below the speed of sound) at a point about 84 Astronomical Units from the Sun (more than twice the distance to Pluto). See https://go.nasa.gov/2uwrndb

10. Ride Along

Voyager's mission is far from over. Engineers estimate the spacecraft will have enough power to operate into the mid-2020s. You can ride along at www.jpl.nasa.gov/voyager, or by following @NASAVoyager on Twitter and by downloading our free 3-D space simulation software, Eyes on the Solar System at eyes.nasa.gov.

image

One more thing: Inspired by the messages of goodwill carried on Voyager's Golden Record, you're invited to send a short, uplifting message to Voyager and all that lies beyond it via social media. With input from the Voyager team and a public vote, one of these messages will be selected for us to beam into interstellar space on Sept. 5, 2017—the 40th anniversary of Voyager 1's launch. Post your message on social media with the tag #MessageToVoyager by Aug 15. Details: www.jpl.nasa.gov/voyager/message/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

TESS: The Planet Hunter

So you’re thinking...who’s TESS? But, it’s more like: WHAT is TESS? 

The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder that is scheduled to launch in April 2018. This mission will search the entire sky for exoplanets — planets outside our solar system that orbit sun-like stars.

image

In the first-ever space borne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances.

The main goal of this mission is to detect small planets with bright host stars in the solar neighborhood, so that we can better understand these planets and their atmospheres.

image

TESS will have a full time job monitoring the brightness of more than 200,000 stars during a two year mission. It will search for temporary drops in brightness caused by planetary transits. These transits occur when a planet’s orbit carries it directly in front of its parent star as viewed from Earth (cool GIF below).

image

TESS will provide prime targets for further, more detailed studies with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.

What is the difference between TESS and our Kepler spacecraft?

TESS and Kepler address different questions: Kepler answers "how common are Earth-like planets?" while TESS answers “where are the nearest transiting rocky planets?”

image

What do we hope will come out of the TESS mission?

The main goal is to find rocky exoplanets with solid surfaces at the right distance from their stars for liquid water to be present on the surface. These could be the best candidates for follow-up observations, as they fall within the “habitable zone” and be at the right temperatures for liquid water on their surface.

TESS will use four cameras to study sections of the sky’s north and south hemispheres, looking for exoplanets. The cameras would cover about 90 percent of the sky by the end of the mission. This makes TESS an ideal follow-up to the Kepler mission, which searches for exoplanets in a fixed area of the sky. Because the TESS mission surveys the entire sky, TESS is expected to find exoplanets much closer to Earth, making them easier for further study.

Stay updated on this planet-hunting mission HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What are the different fields of Earth Science? Are they related to each other?


Tags
4 years ago
Our Friend - The Moon - Is Putting On A Show Tonight!

Our friend - the Moon - is putting on a show tonight!

Look to the sky at 12:44 a.m. EDT to see the first full Moon of summer in the Northern Hemisphere and a partial penumbral eclipse, visible from most of North America. Want more info on this special occurrence? click HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
Loading...
End of content
No more pages to load
  • annita898ol6gmh
    annita898ol6gmh liked this · 6 months ago
  • spira---mirabilis
    spira---mirabilis reblogged this · 9 months ago
  • spira---mirabilis
    spira---mirabilis liked this · 9 months ago
  • blackholesunshineandrainbows
    blackholesunshineandrainbows liked this · 1 year ago
  • setphaserstosquee
    setphaserstosquee liked this · 1 year ago
  • odinsblog
    odinsblog liked this · 1 year ago
  • restjacknwidces
    restjacknwidces liked this · 1 year ago
  • fading-killer
    fading-killer liked this · 1 year ago
  • serah-e-nerd
    serah-e-nerd liked this · 1 year ago
  • demond-meets-evil
    demond-meets-evil liked this · 1 year ago
  • will0waesthetic
    will0waesthetic liked this · 1 year ago
  • ridazzle
    ridazzle reblogged this · 2 years ago
  • mona-vainy
    mona-vainy reblogged this · 2 years ago
  • mona-vainy
    mona-vainy liked this · 2 years ago
  • bbc-s
    bbc-s liked this · 2 years ago
  • ridazzle
    ridazzle liked this · 2 years ago
  • russianobserber1
    russianobserber1 liked this · 2 years ago
  • abyssus-abyssum-invocat-m-d
    abyssus-abyssum-invocat-m-d liked this · 2 years ago
  • deadbilly
    deadbilly reblogged this · 2 years ago
  • voidexiia
    voidexiia liked this · 2 years ago
  • scareprinter
    scareprinter reblogged this · 2 years ago
  • jjgaut
    jjgaut liked this · 2 years ago
  • doniddb-blog
    doniddb-blog liked this · 2 years ago
  • flying-wolf-32
    flying-wolf-32 liked this · 2 years ago
  • nimzay1dstar
    nimzay1dstar reblogged this · 2 years ago
  • ilovestudying555
    ilovestudying555 reblogged this · 2 years ago
  • ilovestudying555
    ilovestudying555 liked this · 2 years ago
  • wannabeajedi
    wannabeajedi liked this · 3 years ago
  • crimson-miz
    crimson-miz liked this · 3 years ago
  • jinglejangle101
    jinglejangle101 liked this · 3 years ago
  • kitchen-light
    kitchen-light liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags