#TBT To 1989 When Voyager 2 Spotted Uranus Looking Like A Seemingly Perfect Robin’s Egg. 💙⁣ ⁣

#TBT To 1989 When Voyager 2 Spotted Uranus Looking Like A Seemingly Perfect Robin’s Egg. 💙⁣ ⁣

#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙⁣ ⁣ When our Voyager 2 spacecraft flew by it in this image, one pole was pointing directly at the Sun. This means that no matter how much it spins, one half is completely in the sun at all times, and the other half is in total darkness.. ⁣ ⁣ Far-flung, Uranus – an ice giant of our solar system – is as mysterious as it is distant. Soon after its launch in 2021, our James Webb Space Telescope will change that by unlocking secrets of its atmosphere. ⁣ ⁣ Image Credit: NASA/JPL-Caltech⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

What’s Up for March 2016?

In March, Jupiter, it’s moons and moon shadows will all be visible in the sky. Find out when and where to look up:

image

Jupiter dominates the evening sky this month, rising at sunset and setting at dawn. On March 8, Jupiter reaches what is called “opposition”. Imagine that Jupiter and the sun are at opposite ends of a straight line, with the Earth in between. This brings Jupiter its closest to Earth, so it shines brighter and appears larger in telescopes.

image

On the nights of March 14 – 15, March 21 – 22 and March 29, two of Jupiter’s moons will cross the planet’s disk. 

image

When the planet is at opposition and the sun shines on Jupiter’s moons, we can see the moon’s shadow crossing the planet. There are actually 11 of these double shadow transits in March!

image

The next six months will be awesome times for you to image Jupiter when it’s highest in the sky; near midnight now, and a little earlier each night through the late summer.

Even through the smallest telescopes or binoculars, you should be able to see the two prominent belts on each side of Jupiter’s equator made up of the four Galilean moons: Io, Europa Ganymede and Calisto. If you have a good enough view, you may even see Jupiter’s Red Spot!

image

Our Juno spacecraft will arrive at Jupiter on July 4th of this year and will go into orbit around the giant planet. Right now, the Juno mission science team is actively seeking amateur and professional images of the planet. These images are uploaded to a Juno website, and the public is invited to discuss points of interest in Jupiter’s atmosphere.

image

Locations will later be voted on and the favorites will be targets for JunoCam, the spacecraft’s imaging camera. Once JunoCam has taken the images, they’ll be posted online. Imaging participants can then process these raw mission images and re-upload them for others to view.  

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago
image

Thank you for joining the #CountdownToMars! The Mars Perseverance Answer Time with expert Chloe Sackier is LIVE!

Stay tuned for talks about landing a rover on Mars, Perseverance's science goals on the Red Planet, landing a career at NASA and more. View ALL the answers HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Observing the Ozone Hole from Space: A Science Success Story

Using our unique ability to view Earth from space, we are working together with NOAA to monitor an emerging success story – the shrinking ozone hole over Antarctica.

image

Thirty years ago, the nations of the world agreed to the landmark ‘Montreal Protocol on Substances that Deplete the Ozone Layer.’ The Protocol limited the release of ozone-depleting chlorofluorocarbons (CFCs) into the atmosphere.

image

Since the 1960s our scientists have worked with NOAA researchers to study the ozone layer. 

image

We use a combination of satellite, aircraft and balloon measurements of the atmosphere.

image

The ozone layer acts like a sunscreen for Earth, blocking harmful ultraviolet, or UV, rays emitted by the Sun.

image

In 1985, scientists first reported a hole forming in the ozone layer over Antarctica. It formed over Antarctica because the Earth’s atmospheric circulation traps air over Antarctica.  This air contains chlorine released from the CFCs and thus it rapidly depletes the ozone.

image

Because colder temperatures speed up the process of CFCs breaking up and releasing chlorine more quickly, the ozone hole fluctuates with temperature. The hole shrinks during the warmer summer months and grows larger during the southern winter. In September 2006, the ozone hole reached a record large extent.

image

But things have been improving in the 30 years since the Montreal Protocol. Thanks to the agreement, the concentration of CFCs in the atmosphere has been decreasing, and the ozone hole maximum has been smaller since 2006’s record.

image

That being said, the ozone hole still exists and fluctuates depending on temperature because CFCs have very long lifetimes. So, they still exist in our atmosphere and continue to deplete the ozone layer.

To get a view of what the ozone hole would have looked like if the world had not come to the agreement to limit CFCs, our scientists developed computer models. These show that by 2065, much of Earth would have had almost no ozone layer at all.

image

Luckily, the Montreal Protocol exists, and we’ve managed to save our protective ozone layer. Looking into the future, our scientists project that by 2065, the ozone hole will have returned to the same size it was thirty years ago.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Back-to-Back Friday Spacewalks

On Friday, Jan. 6 and Friday, Jan. 13, astronauts on the International Space Station will step outside to perform spacewalks. 

image

What’s a spacewalk? It’s any time an astronaut gets out of a vehicle or spacecraft while in space. It can also be called an EVA (extravehicular activity).

Astronauts go on spacewalks for many reasons. These activities allow crew members to work outside their spacecraft (in this case the space station).

image

So what specific tasks will astronauts perform in these two upcoming spacewalks? Let’s take a look…

Both spacewalks are being performed to upgrade the orbital outpost’s power system. 

image

The crew members will install adapter plates and hook up electrical connections for six new lithium-ion batteries that were delivered to the station in December.

image

NASA astronauts Shane Kimbrough and Peggy Whitson will perform the first spacewalk on Jan. 6. The work will continue Jan. 13 during the second spacewalk, which will be conducted by Kimbrough and ESA astronaut Thomas Pesquet.

image

Prior to each spacewalk, the new batteries will be robotically extracted from a pallet to replace 12 older nickel-hydrogen batteries through a series of robotic operations.  

Watch LIVE Spacewalk Coverage

Friday, Jan. 6 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE

Friday, Jan. 13 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE

Watch for more...

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago
Labor Day Reflections: The Nancy Grace Roman Space Telescope’s Primary Mirror Reflects An American

Labor Day reflections: the Nancy Grace Roman Space Telescope’s primary mirror reflects an American flag hanging overhead.⁣ ⁣ The mirror, which will collect and focus light from cosmic objects near and far, has been completed. Renamed after our first chief astronomer and "Mother of Hubble," the Roman Space Telescope will capture stunning space vistas with a field of view 100 times greater than Hubble Space Telescope images. The spacecraft will study the universe using infrared light, which human eyes can’t detect without assistance. ⁣ ⁣ This Labor Day, we thank all the people who work to advance the future for humanity.⁣ ⁣ Credit: L3Harris Technologies⁣ Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com ⁣


Tags
8 years ago

More Than Just Drawings

Artist and graphic designer Mike Okuda may not be a household name, but you’re more familiar with his work than you know. Okuda’s artistic vision has left a mark here at NASA and on Star Trek. The series debuted 50 years ago in September 1966 and the distinctive lines and shapes of logos and ships that he created have etched their way into the minds of fans and inspired many.  

Flight Ops

image

The Flight Operations patch has a lengthy history, the original version of which dates to the early 1970s. Having designed a version of the patch, Okuda had some insights about the evolution of the design.

“The original version of that emblem was designed around 1972 by Robert McCall and represented Mission Control. It later changed to Mission Operations. I did the 2004 version, incorporating the space station, and reflecting the long-term goals of returning to the Moon, then on to Mars and beyond. I later did a version intended to reflect the new generation of spacecraft that are succeeding the shuttle, and most recently the 2014 version reflecting the merger of Mission Operations with the Astronaut Office under the new banner Flight Operations.”

“The NASA logos and patches are an important part of NASA culture,” Okuda said. “They create a team identity and they focus pride on a mission.”

image

In July 2009, Okuda received the NASA Exceptional Public Service Medal, which is awarded to those who are not government employees, but have made exceptional contributions to NASA’s mission. Above, Okuda holds one of the mission patches he designed, this one for STS-125, the final servicing mission to the Hubble Space Telescope.

Orion

image

Among the other patches that Okuda has designed for us, it one for the Orion crew exploration vehicle. Orion is an integral of our Journey to Mars and is an advanced spacecraft that will take our astronauts deeper into the solar system than ever before. 

Okuda’s vision of space can be seen in the Star Trek series through his futuristic set designs, a vision that came from his childhood fascination with the space program. 

Learn more about Star Trek and NASA.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
5 years ago
Flawless. Gorgeous. Stellar. 

Flawless. Gorgeous. Stellar. 

You probably think this post is about you. Well, it could be. 

In this image taken by our Hubble Space Telescope, we see a spiral galaxy with arms that widen as they whirl outward from its bright core, slowly fading into the emptiness of space. Click here to learn more about this beautiful galaxy that resides 70 million light-years away. 

Credit: ESA/Hubble & NASA, L. Ho Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
NASA Spotlight: Brandon Rodriguez, Jet Propulsion Laboratory Education Specialist 

NASA Spotlight: Brandon Rodriguez, Jet Propulsion Laboratory Education Specialist 

Brandon Rodriguez is an education specialist at our Jet Propulsion Laboratory (JPL) in Pasadena, California where he provides resources and training to K-12 schools across the Southwest. Working with a team at JPL, he develops content for classroom teachers, visits schools and speaks with students and trains future teachers to bring NASA into their classroom. When he’s not in the classroom, Brandon’s job takes him on research expeditions all around the world, studying our planet’s extreme environments.  

Fun fact: Brandon wakes up every morning to teach an 8 a.m. physics class at a charter school before heading to JPL and clocking in at his full time job. When asked why? He shared, “The truth is that I really feel so much better about my role knowing that we’re not ‘telling’ teachers what to do from our ivory tower. Instead, I can “share” with teachers what I know works not just in theory, but because I’m still there in the classroom doing it myself.” - Brandon Rodriguez

Brandon took time from exciting the next generation of explorers to answer some questions about his life and his career: 

What inspired you to work in the educational department at NASA?

I was over the moon when I got a call from NASA Education. I began my career as a research scientist, doing alternative energy work as a chemist. After seven years in the field, I began to feel as if I had a moral responsibility to bring access to science to a the next generation. To do so, I quit my job in science and became a high school science teacher. When NASA called, they asked me if I wanted a way to be both a scientist and an educator- how could I resist?

image

You were born in Venezuela and came to the U.S. when you were 12 years old. Can you tell us the story of why and how you came to America?

I haven't been back to Venezuela since I was very young, which has been very difficult for me. Being an immigrant in the USA sometimes feels like you're an outsider of both sides: I'm not truly Latin, nor am I an American. When I was young, I struggled with this in ways I couldn't articulate, which manifested in a lot of anger and got me in quite a bit of trouble. Coming to California and working in schools that are not only primarily Latinx students, but also first generation Latinx has really helped me process that feeling, because it's something I can share with those kids. What was once an alienating force has become a very effective tool for my teaching practice.

Does your job take you on any adventures outside of the classroom and if so, what have been your favorite endeavors?

I'm so fortunate that my role takes me all over the world and into environments that allow to me to continue to develop while still sharing my strengths with the education community. I visit schools all over California and the Southwest of the USA to bring professional development to teachers passionate about science. But this year, I was also able to join the Ocean Exploration Trust aboard the EV Nautilus as we explored the Pacific Remote Island National Marine Monument. We were at sea for 23 days, sailing from American Samoa to Hawaii, using submersible remotely operated vehicles to explore the ocean floor. 

image

Image Credit: Nautilus Live 

We collected coral and rock samples from places no one has ever explored before, and observed some amazing species of marine creatures along the way.

image

Image Credit: Nautilus Live 

What keeps you motivated to go to work every day?

There's no greater motivation than seeing the product of your hard work, and I get that everyday through students. I get to bring them NASA research that is "hot off the press" in ways that their textbooks never can. They see pictures not online or on worksheets, but from earlier that day as I walked through JPL. It is clearly that much more real and tangible to them when they can access it through their teacher and their community.

image

Do you have any tips for people struggling with their science and math classes? 

As someone who struggled- especially in college- I want people to know that what they struggle with isn't science, it's science classes. The world of research doesn't have exams; it doesn't have blanks to be filled in or facts to be memorized. Science is exploring the unknown. Yes, of course we need the tools to properly explore, and that usually means building a strong academic foundation. But it helped me to differentiate the end goal from the process: I was bad at science tests, but I wanted to someday be very good at science. I could persevere through the former if it got me to the latter.

If you could safely visit any planet, star, or solar system, where would you visit and what would you want to learn?

Europa, without a doubt. Imagine if we found even simple life once more in our solar system- and outside of the habitable zone, no less. What would this mean for finding life outside of our solar system as a result? We would surely need to conclude that our sky is filled with alien worlds looking back at us.

image

Is there a moment or project that you feel defined (or significantly impacted) your career up to today?

While I never worked closely with the mission, Insight was a really important project for me. It's the first time while at JPL I was able to see the construction, launch and landing of a mission.

If you could name a spaceship, what would you name it?

For as long as I can remember, I've been watching and reading science fiction, and I continue to be amazed at how fiction informs reality. How long ago was it that in Star Trek, the crew would be handing around these futuristic computer tablets that decades later would become common iPads?  In their honor, I would be delighted if we named a ship Enterprise.

Thanks so much Brandon! 

Additional Image Credit: MLParker Media

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

@mothdog: What is something everyone needs to know about the International Space Station and science in space?


Tags
4 years ago

Mars Helicopter: 6 Things to Know About Ingenuity

Mars Helicopter: 6 Things To Know About Ingenuity

When our Perseverance Mars rover lands on the Red Planet on Feb. 18, 2021, it will bring along the Ingenuity helicopter.

This small-but-mighty craft is a technology demonstration that will attempt the first powered, controlled flight on another planet. Its fuselage is about the size of a tissue box, and it weighs about 4 pounds (1.8 kg) on Earth. It started out six years ago as an implausible prospect and has now passed its Earthbound tests.

Here are six things to know about Ingenuity as it nears Mars:

1. Ingenuity is an experimental flight test.

Mars Helicopter: 6 Things To Know About Ingenuity

This Mars helicopter is known as a technology demonstration, which is a project that aims to test a new capability for the first time with a limited scope. Previous technology demonstrations include Sojourner, the first Mars rover, and the Mars Cube One (MarCO) CubeStats that flew by Mars.

Ingenuity does not carry any science instruments and is not part of Perseverance’s science mission. The only objective for this helicopter is an engineering one – to demonstrate rotorcraft flight in the thin and challenging Martian atmosphere.

2. Mars won’t make it easy for Ingenuity.

Mars Helicopter: 6 Things To Know About Ingenuity

Mars’ atmosphere is around 1% the density of Earth’s. Because of that lack of density, Ingenuity has rotor blades that are much larger and spin faster than a helicopter of Ingenuity’s mass here on our planet. It also must be extremely light to travel to Mars.

The Red Planet also has incredibly cold temperatures, with nights reaching minus 130 degrees Fahrenheit (-90 degrees Celsius) in Jezero Crater, where our rover and helicopter will land. Tests on Earth at the predicted temperatures indicate Ingenuity’s parts should work as designed, but the real test will be on Mars.

3. Ingenuity relies on Perseverance for safe passage to Mars and operations on the Martian surface.

Mars Helicopter: 6 Things To Know About Ingenuity

Ingenuity is nestled sideways under Perseverance’s belly with a cover to protect the helicopter from debris during landing. The power system on the Mars 2020 spacecraft periodically charges Ingenuity’s batteries during the journey to the Red Planet.

In the first few months after landing, Perseverance will find a safe place for Ingenuity. Our rover will shed the landing cover, rotate the helicopter so its legs face the ground and gently drop it on the Martian surface.

4. Ingenuity is smart for a small robot.

Mars Helicopter: 6 Things To Know About Ingenuity

NASA’s Jet Propulsion Laboratory will not be able to control the helicopter with a joystick due to delays communicating with spacecraft across interplanetary distances. That means Ingenuity will make some of its own decisions based on parameters set by its engineering team on Earth.

During flight, Ingenuity will analyze sensor data and images of the terrain to ensure it stays on a flight path designed by project engineers.

5. The Ingenuity team counts success one step at a time.

Mars Helicopter: 6 Things To Know About Ingenuity

Ingenuity’s team has a long list of milestones the helicopter must pass before it can take off and land in the Martian atmosphere.

Surviving the journey to and landing on Mars

Safely deploying onto the Martian surface from Perseverance’s belly

Autonomously keeping warm through those intensely cold Martian nights

Autonomously charging itself with its solar panel

Successfully communicating to and from the helicopter via the Mars Helicopter Base Station on Perseverance

6. If Ingenuity succeeds, future Mars exploration could include an ambitious aerial dimension.

Mars Helicopter: 6 Things To Know About Ingenuity

The Mars helicopter intends to demonstrate technologies and first-of-its-kind operations needed for flying on Mars. If successful, these technologies and flight experience on another planet could pave the way for other advanced robotic flying vehicles.

Possible uses of a future helicopter on Mars include:

A unique viewpoint not provided by current orbiters, rovers or landers

High-definition images and reconnaissance for robots or humans

Access to terrain that is difficult for rovers to reach

Could even carry light but vital payloads from one site to another

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • nojkno
    nojkno liked this · 1 year ago
  • armchair-misanthrope
    armchair-misanthrope liked this · 1 year ago
  • antonio-teixeira
    antonio-teixeira liked this · 2 years ago
  • gettinglostinlife
    gettinglostinlife liked this · 2 years ago
  • brightmane57
    brightmane57 reblogged this · 2 years ago
  • brightmane57
    brightmane57 liked this · 2 years ago
  • lhurluberlu-hululant
    lhurluberlu-hululant liked this · 2 years ago
  • stealth-liberal
    stealth-liberal reblogged this · 2 years ago
  • stealth-liberal
    stealth-liberal liked this · 2 years ago
  • beardednightdeer
    beardednightdeer liked this · 2 years ago
  • gage0mate
    gage0mate reblogged this · 2 years ago
  • gage0mate
    gage0mate liked this · 2 years ago
  • thingshavechangedbobby
    thingshavechangedbobby liked this · 2 years ago
  • whatareyoureallyafraidof
    whatareyoureallyafraidof reblogged this · 2 years ago
  • yulo-reblogs
    yulo-reblogs liked this · 2 years ago
  • thathalloweengal
    thathalloweengal reblogged this · 2 years ago
  • stardating
    stardating reblogged this · 2 years ago
  • acidbathcat
    acidbathcat liked this · 2 years ago
  • the-summer-sun-au
    the-summer-sun-au liked this · 3 years ago
  • elront
    elront reblogged this · 3 years ago
  • elront
    elront liked this · 3 years ago
  • zippy6958
    zippy6958 liked this · 3 years ago
  • beforevenice
    beforevenice liked this · 3 years ago
  • johnoaber
    johnoaber liked this · 3 years ago
  • ry-flute
    ry-flute reblogged this · 3 years ago
  • incredibly-okaay
    incredibly-okaay liked this · 3 years ago
  • immortalcosmicprincesssaturn
    immortalcosmicprincesssaturn liked this · 3 years ago
  • utah61
    utah61 liked this · 3 years ago
  • ravnlghtft
    ravnlghtft liked this · 3 years ago
  • thissometimepoet
    thissometimepoet liked this · 3 years ago
  • im----locked
    im----locked liked this · 3 years ago
  • biscoeda
    biscoeda liked this · 3 years ago
  • massivetyphoonflower
    massivetyphoonflower liked this · 3 years ago
  • theballadofjohngeorgeandyoko
    theballadofjohngeorgeandyoko liked this · 3 years ago
  • 1ebilcat
    1ebilcat reblogged this · 3 years ago
  • rumplefuckingstiltzkin
    rumplefuckingstiltzkin reblogged this · 3 years ago
  • wraithtwelve
    wraithtwelve liked this · 3 years ago
  • shtrbger
    shtrbger reblogged this · 3 years ago
  • fabledshadow
    fabledshadow liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags