Celebration, "Further Than Before: Pathway To The Stars, Part 1, Is Now Available In Barnes And Noble!

Celebration, "Further Than Before: Pathway To The Stars, Part 1, Is Now Available In Barnes And Noble!

Celebration, "Further than Before: Pathway to the Stars, Part 1, is now available in Barnes and Noble! #furtherthanbefore #pathwaytothestars #politicalsciencefiction #beautyinevolution #strongfemalelead #strongmalerolemodel #neuroscience #physics #theoreticalphysics #biotechnology #nanotechnology #longevity #CRISPR #physiology https://www.instagram.com/p/BrKHKwSngsQ/?utm_source=ig_tumblr_share&igshid=19jjtphkx0liq

More Posts from Matthewjopdyke and Others

7 years ago

That's beautiful! :)

Milky way over Mount Hood from Laurence Lake, Oregon

5 years ago

Pathway to the Stars: Part 11, A New Day

"If we can love ourselves, we can then truly understand what it means to love others and be kind. There is potential that lies within you and everyone else. It is a potential that has always been meant to exist, to bring something greater to this reality of life."

~ Sky Taylor

This story is the eleventh of the Pathway to the Stars space opera series. Sky journeys with Erin Carter and Joanne Gallant, who are now Pathway's president and vice president. On their adventure, she shows them ways to heal the Earth as well as ourselves so we can promote a healthier form of longevity.

To Sky, there is much we can do to prevent future disasters, but sometimes solutions can involve something as simple as a nice walk. In this case, unfortunately, to help Joanne figure out a mystery weighing upon her.

Meanwhile, Eliza Williams and Yesha Alevtina work for the success of the Universal Party with efforts that will affect the United States, the World, and the mission to span the Cosmos!

LCCN: 2019919255

ISBN: 978-1-951321-15-4

eBook: https://smile.amazon.com/dp/B081XNYSL4

Paperback: https://smile.amazon.com/dp/1951321154

#ScienceFiction #Scifi #SpaceOpera #Fantasy #Author #MatthewJOpdyke #EarthFirst #Preservation #ConsiderationForAllLiving #Biology #Neuroscience #Biotechnology #AI #HBCI

6 years ago
Now, Together, Part 1, Vesha Celeste, And Part 2, Eliza Williams, Have Been Paired Together, And Are

Now, together, Part 1, Vesha Celeste, and Part 2, Eliza Williams, have been paired together, and are available for those interested in the types of science, the directions of science, and the speculation that leads to well-being and quality of life, feel free to follow, message, and share ideas, and be a part of a positive future where, if we so choose, we can navigate the stars. This is just the beginning of this series and prequel, “Pathway to the Stars,” to a giant series, “Further than Before!” Please enjoy. https://www.amazon.com/author/matthewopdyke #sciencefiction #scifi #sciencefictionfantasy #scififantasy #politicalscifi #politicalsciencefiction #strongfemalelead #utopian #technologyidealism #neuroscience #nanotech #nanotechnology #physics #theoreticalphysics #problemresolution #apoliticalscifi #biology #CRISPR #stemcellresearch #geneticmodification https://www.instagram.com/p/BpUMW6ZgB1I/?utm_source=ig_tumblr_share&igshid=1nhhhf9ev7vpq


Tags
7 years ago
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars
Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars

Space Is Full Of Planets, And Most Of Them Don’t Even Have Stars

“When we look at our Universe, where our own galaxy contains some 400 billion stars and there are some two trillion galaxies in the Universe, the realization that there are around ten planets for every star is mind-boggling. But if we look outside of solar systems, there are between 100 and 100,000 planets wandering through space for every single star that we can see. While a small percentage of them were ejected from solar systems of their own, the overwhelming majority have never known the warmth of a star at all. Many are gas giants, but still more are likely to be rocky and icy, with many of them containing all the ingredients needed for life. Perhaps, someday, they’ll get their chance. Until then, they’ll continue to travel, throughout the galaxy and throughout the Universe, vastly outnumbering the dizzying array of lights illuminating the cosmos.”

According to the International Astronomical Union, planets need to have enough mass to pull themselves into hydrostatic equilibrium, they need to orbit a star and not any other object, and they need to clear their orbits in a certain amount of cosmic time. But what do you call an object that would have been a planet, if only it were in orbit around a star, but instead wanders through the heavens alone, unbound to any larger masses? These rogue planets are surprisingly ubiquitous in our galaxy and beyond, and we expect that they’ll far outnumber not only the stars, but even the planets that are found orbiting stars. Where do these rogue worlds come from? A percentage of them are orphans, having been ejected from the solar system that they formed in, but the overwhelming majority ought to have never been part of a star system at all.

Come learn how even though space is full of planets, many containing the ingredients for life, most of them don’t even have stars to orbit to give them a chance.

7 years ago

I was curious about a closeup of Saturn's rings... nice!

52 Of Cassini’s Most Beautiful Postcards From The Outer Solar System
52 Of Cassini’s Most Beautiful Postcards From The Outer Solar System
52 Of Cassini’s Most Beautiful Postcards From The Outer Solar System
52 Of Cassini’s Most Beautiful Postcards From The Outer Solar System
52 Of Cassini’s Most Beautiful Postcards From The Outer Solar System

52 of Cassini’s most beautiful postcards from the outer solar system

The spacecraft completely changed our view of Saturn and her moons

One of NASA’s greatest spacecraft will call it quits on September 15, 2017. The Cassini spacecraft has made countless discoveries during its sojourn to Saturn and its surrounding moons. It has also sent back nearly 400,000 images, many of which are purely spectacular, with surely more to come during the final months of the mission as Cassini explores new territory between Saturn and its rings.

In honor of the brave spacecraft, we spent hours sifting through the deluge of images to highlight some of Cassini’s best views from Saturn.

See all 52 ~ Popular Science

Image credits: NASA

6 years ago

Happy Holidays! https://www.instagram.com/p/BroSlILgeTY/?utm_source=ig_tumblr_share&igshid=l5400fyporq0

8 years ago

Interesting project. :)

How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100
How To Prove Einstein’s Relativity For Less Than $100

How To Prove Einstein’s Relativity For Less Than $100

“But the fact that you can see cosmic ray muons at all is enough to prove that relativity is real. Think about where these muons are created: high in the upper atmosphere, about 30-to-100 kilometers above Earth’s surface. Think about how long a muon lives: about 2.2 microseconds on average. And think about the speed limit of the Universe: the speed of light, or about 300,000 kilometers per second. If you have something moving at the speed of light that only lives 2.2 microseconds, it should make it only 0.66 kilometers before decaying away. With that mean lifetime, less than 1-in-10^50 muons should reach the surface. But in reality, almost all of them make it down.”

Relativity, or the idea that space and time are not absolute, was one of the most revolutionary and counterintuitive scientific theories to come out of the 20th century. It was also one of the most disputed, with hundreds of scientists refusing to accept it. Yet with less than $100 and a single day’s worth of labor, there’s a way you can prove it to yourself: by building a cloud chamber. An old fishtank, some 100% ethyl or isopropyl alcohol, a metal base with dry ice beneath it and only a few other steps (see the full article for instructions) will allow you to construct a detector capable of seeing unstable cosmic particles. Yet these particles – and you’ll see about 1-per-second – would never reach Earth’s surface if it weren’t for relativity!

Come learn how you can validate Einstein’s first great revolution all for yourself, and silence the doubts in your mind. Nature really is this weird!

7 years ago

10 Things: Journey to the Center of Mars

May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.

image

Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.

1. What’s in a name? 

image

“Insight” is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the “vital signs” of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.

2. Marsquakes. 

You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they’re made of. In this way, seismology is like taking an X-ray of the interior of Mars.

Want to know more? Check out this one-minute video.

3. More than Mars. 

image

InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth’s interior to that of Mars, InSight’s team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.

4. Robot testing. 

InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.

Want to see what a Mars robot test lab is like? Take a 360 tour.

5. The gang’s all here. 

image

InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.

6. Trifecta. 

image

InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.

7. Solar wings. 

Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.

8. Clues in the crust. 

image

Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.

9. Passengers. 

image

InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. “It’s a fun way for the public to feel personally invested in the mission,” said Bruce Banerdt of our Jet Propulsion Laboratory, the mission’s principal investigator. “We’re happy to have them along for the ride.”

10. Tiny CubeSats, huge firsts. 

image

The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.

Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

6 years ago
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?

What is the Atacama Large Millimeter/submillimeter Array (ALMA)?

High on the Chajnantor plateau in the Chilean Andes, the European Southern Observatory (ESO), together with its international partners, is operating the Atacama Large Millimeter/submillimeter Array (ALMA) — a state-of-the-art telescope to study light from some of the coldest objects in the Universe. This light has wavelengths of around a millimetre, between infrared light and radio waves, and is therefore known as millimetre and submillimetre radiation. ALMA comprises 66 high-precision antennas, spread over distances of up to 16 kilometres. This global collaboration is the largest ground-based astronomical project in existence.

The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the Very Large Array (VLA) site in New Mexico, United States.

What is submillimetre astronomy?

Light at these wavelengths comes from vast cold clouds in interstellar space, at temperatures only a few tens of degrees above absolute zero, and from some of the earliest and most distant galaxies in the Universe. Astronomers can use it to study the chemical and physical conditions in molecular clouds — the dense regions of gas and dust where new stars are being born. Often these regions of the Universe are dark and obscured in visible light, but they shine brightly in the millimetre and submillimetre part of the spectrum.

Why build ALMA in the high Andes?

Millimetre and submillimetre radiation opens a window into the enigmatic cold Universe, but the signals from space are heavily absorbed by water vapour in the Earth’s atmosphere. Telescopes for this kind of astronomy must be built on high, dry sites, such as the 5000-m high plateau at Chajnantor, one of the highest astronomical observatory sites on Earth.

The ALMA site, some 50 km east of San Pedro de Atacama in northern Chile, is in one of the driest places on Earth. Astronomers find unsurpassed conditions for observing, but they must operate a frontier observatory under very difficult conditions. Chajnantor is more than 750 m higher than the observatories on Mauna Kea, and 2400 m higher than the VLT on Cerro Paranal.

Source: eso.org

6 years ago

https://www.youtube.com/embed/YVfMMpkVs80?feature=oembed&enablejsapi=1&origin=https://safe.txmblr.com&wmode=opaque

I am pleased to announce a NEW RELEASE to my Space Opera series. It is now available on Amazon in ebook and paperback formats! 

Pathway to the Stars: Part 4, Universal Party

Autographed copies of printed material are available for direct purchase on the author website at:

https://www.ftb-pathway-publications.com 

Thank you, Kim, for putting this together!


Tags
Loading...
End of content
No more pages to load
matthewjopdyke - Matthew J. Opdyke
Matthew J. Opdyke

Author Matthew J. Opdyke, Science Fiction and Fantasy

147 posts

Explore Tumblr Blog
Search Through Tumblr Tags