Hello Everyone! After A Couple Of Months Of Work On This Beast Of A Thing, The First Draft Of My Promised

Hello Everyone! After A Couple Of Months Of Work On This Beast Of A Thing, The First Draft Of My Promised
Hello Everyone! After A Couple Of Months Of Work On This Beast Of A Thing, The First Draft Of My Promised
Hello Everyone! After A Couple Of Months Of Work On This Beast Of A Thing, The First Draft Of My Promised
Hello Everyone! After A Couple Of Months Of Work On This Beast Of A Thing, The First Draft Of My Promised
Hello Everyone! After A Couple Of Months Of Work On This Beast Of A Thing, The First Draft Of My Promised

Hello everyone! after a couple of months of work on this beast of a thing, the first draft of my promised writeup on understanding composition is finally ready! This badboy is almost 15,000 words, and over 150 pages long. In these images, you can see a couple of examples of the kind of subject matter I’ll be covering, but it’s very comprehensive. 

This is currently available on my Patreon starting at just $2!

I think what I offer is a pretty unique take on composition, and it’s geared to be understood without a lot of consideration for the more finnicky technical elements of drawing, so if that’s part of art you have trouble with you might find some answers in my approach. Using my own art and examples from various disciplines and eras, I break down how to understand why a composition does - or doesn’t - work, all building to a toolset that lets you have control over your own compositions with precision and intent. 

A sincere thank you to anyone who takes the time to look at it, and at the end of the day, always remember one fundamental rule of art:

image

More Posts from Donutdomain and Others

2 years ago

Meet NGC 2841

Meet NGC 2841

Location: In the constellation Ursa Major

Type: Flocculent spiral galaxy

Discovered by: William Herschel

NGC 2841 is a beautiful example of a flocculent spiral galaxy – a type with discontinuous, featherlike, and patchy arms. A bright cusp of starlight distinguishes the galaxy's center from the dust lanes that outline the group of almost white middle-aged stars. The far younger blue stars trace the spiral arms.

Find out more information about NGC 2841 here.

Right now, the Hubble Space Telescope is exploring #GalaxiesGalore! Find more galaxy content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.

Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: M. Crockett and S. Kaviraj (Oxford University, UK), R. O'Connell (University of Virginia), B. Whitmore (STScI), and the WFC3 Scientific Oversight Committee


Tags
3 years ago
Symmetry Magazine
Symmetry Magazine

Symmetry Magazine

How JWST will test models of cold dark matter

By Madeleine O’Keefe

Two projects in JWST’s first observation cycle will probe the nature of dark matter.

On Christmas morning of 2021, an Ariane 5 CEA rocket blasted off from Kourou, French Guinea. It carried with it the largest and most sophisticated space telescope ever built: the James Webb Space Telescope.

Since then, JWST has reached its orbit about 1 million miles from Earth, unfurled its tennis-court-sized sunshield, and aligned its 18 hexagonal mirror segments. The telescope’s first images are expected by summer.

Over the next decade, JWST will make cutting-edge observations to help scientists answer myriad outstanding questions in astronomy—including questions about the nature of dark matter.

Hot, warm or cold Dark matter is an enigmatic substance that scientists believe accounts for 85% of matter in the universe. But so far it has not been observed directly; scientists can infer dark matter’s presence only by observing its gravitational effects on normal matter.

Different theories posit different types of dark-matter particles. Dark-matter candidates considered “hot” or “warm” are particles that would have moved so quickly in the early universe that gravity would not have been able to confine them. On the other hand, dark-matter candidates considered “cold” are thought to have moved so slowly that gravity would have formed them into small dark-matter structures that eventually would have coalesced into larger, “clumpy” ones.

“Decades’ worth of computer simulations have tested how structure forms and grows under the hypothesis of cold dark matter,” says Matthew Walker, an associate professor of physics at Carnegie Mellon University.

Cold dark-matter simulations show dark matter clumping into small blobs, which encounter other blobs and merge together, continually snowballing until large structures like the Milky Way are formed. These gravitationally bound blobs of dark matter are known as halos.

JWST can see your halo Anna Nierenberg, assistant professor of physics at University of California, Merced, was awarded 39 hours of observing time during JWST’s Cycle 1 to look for small dark-matter halos.

Many models, including the baseline dark-matter model, predict the existence of small (107 solar mass) halos that do not actually contain galaxies. Such a halo would “just be a blob of dark matter” with no stars inside it, Nierenberg says.

If there are no stars within these blobs of invisible material, how can we even try to detect them? Nierenberg and her team of nearly 20 scientists in the US, Canada, the United Kingdom, Switzerland, Spain, Belgium and Chile are using a phenomenon called gravitational lensing.

Born of Albert Einstein’s theory of general relativity, gravitational lensing says that matter bends spacetime and, subsequently, any light that encounters it. If light from a distant source travels through the universe toward Earth and passes by a massive object—such as a blob of dark matter—the light will be warped around it. If the in-between object is massive enough, the light is deflected in such a way that we’ll see up to four images of the light source appearing around the mass.

Nierenberg’s group will measure the number of small dark-matter halos by observing a sample of quasars (supermassive black holes at cosmological distances surrounded by dusty accretion disks) that have been gravitationally lensed. Detecting small halos would be a triumph for the cold dark-matter theory; conversely, not detecting small halos would imply that cold dark matter does not exist.

Because the light from these quasars must travel a great distance in an ever-expanding universe, it is stretched along the way, pulling its wavelengths into the infrared range. The mid-infrared wavelengths they are observing are almost impossible to see with ground-based telescopes. “We’re going to be observing with absolute reddest bands that JWST can accommodate,” Nierenberg says.

These wavelengths cannot be observed by the Hubble Space Telescope, which studies gravitational lensing at visible wavelengths. And older space-based telescopes that can see in the mid-infrared don’t have the resolution to separate the different lenses. Making these observations in mid-IR requires the high spatial resolution that only the JWST can provide, Nierenberg says.

Daniel Gilman, a postdoc at the University of Toronto and one of Nierenberg’s co-investigators, says, “The kind of data that we can get with JWST is unique and much more powerful or constraining than the kind of data that we could get with Hubble or from the ground.”

Nierenberg says, “I really believe that this is going to be a huge scientific step forward.”

Looking far and wide Walker is leading another dark-matter project in JWST’s Cycle 1, but his group didn’t apply for observing time. Instead, they are using data that JWST is collecting for other programs.

Walker’s group’s “archival research” is looking inside dwarf galaxies to find wide binary stars, systems of two stars orbiting each other at relatively large distances (on the order of one parsec, slightly less than the distance between the sun and our closest neighbor, Proxima Centauri).

“Because [wide binary stars] are so far apart, they’re very fragile systems,” says Walker. “If, say, a little dark-matter halo were to fly past a wide binary-star system, it could exchange energy with either or both of the stars in that system. And it just takes a small fraction of a fraction of a percent increase in the energy of either star to rip the pair apart.”

If Walker’s team finds wide binary stars, “we can be reasonably confident that those sub-galactic cold dark matter halos don’t exist,” he says. “And that, then, would be a real problem for the cold dark-matter model in general.”

That’s what Katharine Lee, a junior physics major at Carnegie Mellon in Walker’s group, likes about the project. “I particularly think this research is really interesting because the current framework for what we think of as the structure of dark matter is the cold dark-matter model, and the research that Professor Walker’s doing could potentially invalidate that.”

If the group did not find wide binary stars, it could be a sign that they were destroyed by dark matter. But it would not prove that they were destroyed—they may just have never formed in these dwarf galaxies in the first place.

Walker says that JWST is an ideal tool for this search because of its “exquisite sensitivity to faint objects,” as well as the telescope’s abilities to take high-quality images and distinguish pairs of sources at very small separations. And thanks to its 21-foot-diameter primary mirror, JWST will see farther than any other telescope ever built.

“I think JWST is going to give us a new and really powerful angle,” says Jorge Peñarrubia, a professor at the University of Edinburgh and one of Walker’s co-investigators. “But even if that fails, we’ll find other ways.”

Indeed, there are many other techniques that scientists use to search for dark matter, including direct searches by physics experiments. And both Nierenberg and Walker are using gravitational lensing and wide binary-star methods on data from the Hubble Space Telescope while they wait for JWST to open its eyes.

Future JWST science programs might further explore the mysteries of dark matter, whether through gravitational lensing or perhaps by observing statistics of galaxy evolution that scientists can then compare to dark-matter theories.

“We don’t lack theories of what dark matter could be. There are a lot of them,” Gilman says. “What we lack are observations that wield a lot of constraining power over these theories. And that’s something that JWST is going to give us.”

Illustration by Sandbox Studio, Chicago with Olena Shmahalo


Tags
3 years ago

Your writing will always feel awkward to you, because you wrote it.

Your plot twists will always feel predictable, because you created them.

Your stories will always feel a bit boring to you, because you read them a million times.

They won't feel like that for your reader.


Tags
3 years ago

I'm currently working on an animatic, could you give me any advice?

1.

I'm Currently Working On An Animatic, Could You Give Me Any Advice?

2.

I'm Currently Working On An Animatic, Could You Give Me Any Advice?

3.

I'm Currently Working On An Animatic, Could You Give Me Any Advice?

4.

I'm Currently Working On An Animatic, Could You Give Me Any Advice?

5.

I'm Currently Working On An Animatic, Could You Give Me Any Advice?

I still haven’t taken any animation or storyboarding classes, but these are general TECHNICAL tips I’ve learned online and through trying to fix my own boards. Definitely practice with things your passionate about/interested as it’ll make the process so much more fun (: for me the technical parts aren't the hardest, moreso actually visualizing and deciding the scenes mentally, which takes practice.

Also 6 cuz yeee:

I'm Currently Working On An Animatic, Could You Give Me Any Advice?

I had a classmate laugh cuz I said I used wmm for my boards and he thought he needed a fancy $7 blue pencil LIKE NO BRO JUST USE WHAT YOU HAVE IF YOU CAN’T AFFORD THINGS LOLLLL. I have a small huion screen now, but it’s down to preference cuz honestly I prefer paper over digital 0′;

Good luck though! Once I take classes or if I have more tips id gladly share them with yall (:


Tags
3 years ago
Give It A Try

Give it a try


Tags
2 years ago
Part 2 Of Cino Art Tips Is Some Basic Tips On Shape And Silhouette Design Which Are Also Principles I
Part 2 Of Cino Art Tips Is Some Basic Tips On Shape And Silhouette Design Which Are Also Principles I
Part 2 Of Cino Art Tips Is Some Basic Tips On Shape And Silhouette Design Which Are Also Principles I

Part 2 of cino art tips is some basic tips on shape and silhouette design which are also principles I think about a lot :)

(also i'm so sorry i chose comic sans to write this in idk what i was thinking but i already flattened the layers)

i don't have any other obvious tips off the top of my head rn but feel free to ask anything you are curious about! i love getting asks uwu


Tags
3 years ago
Herschel’s View Of New Stars And Molecular Clouds By Europeanspaceagency

Herschel’s view of new stars and molecular clouds by europeanspaceagency


Tags
2 years ago
NGC 3314
NGC 3314
NGC 3314

NGC 3314

At first glance you'd be forgiven for thinking this was two galaxies merging, but they are actually 23 million light years from one another, and just happen to be overlapping due to our perspective.

The closest galaxy is 117 million light years away with the other 140 in the constellation of Hydra.


Tags
2 years ago
A pale orange salmon snailfish with big silver eyes and two tufts of barbels hanging down from its chin swims at a slight upwards angle into the camera. It is very round and squishy, and swimming in pitch-black water.

“Welcome to Snackbeard’s Sandbar and Krill And Other DelicaSeas and Delights!”

When snacktime beckons in the deep sea, salmon snailfish wiggle wiggle those little chin-fins (which are actually modified pectoral fins) in the sand—but it’s all in good taste. Those whiskers are covered in tastebuds, and can help them sus out small crustaceans, like amphipods and crabs, hidden in the muck!


Tags
Loading...
End of content
No more pages to load
  • alokiasaltwater
    alokiasaltwater liked this · 1 week ago
  • betwixtyiff
    betwixtyiff liked this · 3 weeks ago
  • sammyboof
    sammyboof reblogged this · 3 weeks ago
  • sammyboof
    sammyboof liked this · 3 weeks ago
  • spicyartereferences
    spicyartereferences reblogged this · 1 month ago
  • nexomify
    nexomify liked this · 2 months ago
  • sighinastorm
    sighinastorm reblogged this · 2 months ago
  • chaoticsamson
    chaoticsamson reblogged this · 2 months ago
  • just-a-long-nap-please
    just-a-long-nap-please liked this · 2 months ago
  • zossssss
    zossssss liked this · 2 months ago
  • orange-theeth69
    orange-theeth69 liked this · 2 months ago
  • sushifresse
    sushifresse liked this · 2 months ago
  • a-german-with-the-gay
    a-german-with-the-gay reblogged this · 2 months ago
  • abeterger
    abeterger reblogged this · 2 months ago
  • abeterger
    abeterger liked this · 2 months ago
  • tigerarainbowra-blog
    tigerarainbowra-blog liked this · 2 months ago
  • doggosomniac
    doggosomniac reblogged this · 2 months ago
  • alebrijediscordico
    alebrijediscordico reblogged this · 2 months ago
  • spolew
    spolew liked this · 3 months ago
  • ectonaut
    ectonaut reblogged this · 3 months ago
  • bagirizann
    bagirizann liked this · 3 months ago
  • looneylounna
    looneylounna liked this · 3 months ago
  • masterpie321
    masterpie321 liked this · 4 months ago
  • owy-exe
    owy-exe liked this · 4 months ago
  • darie-vox
    darie-vox liked this · 4 months ago
  • theonnor
    theonnor liked this · 4 months ago
  • alexander-norkat
    alexander-norkat reblogged this · 4 months ago
  • artking-4
    artking-4 reblogged this · 5 months ago
  • artking-4
    artking-4 reblogged this · 5 months ago
  • justcrusingaround890
    justcrusingaround890 liked this · 5 months ago
  • illdoitlater007
    illdoitlater007 reblogged this · 5 months ago
  • illdoitlater007
    illdoitlater007 liked this · 5 months ago
  • izmarooned
    izmarooned reblogged this · 6 months ago
  • izmarvelous
    izmarvelous liked this · 6 months ago
  • sadboi-blue
    sadboi-blue liked this · 6 months ago
  • ranieridettorre
    ranieridettorre liked this · 6 months ago
  • thekidasleep
    thekidasleep liked this · 6 months ago
  • chloe-i-guess1
    chloe-i-guess1 liked this · 6 months ago
  • cutesycosplay
    cutesycosplay reblogged this · 6 months ago
  • otakulady89
    otakulady89 reblogged this · 6 months ago
  • literallyelrond
    literallyelrond reblogged this · 6 months ago
  • literallyelrond
    literallyelrond liked this · 6 months ago
  • aimless-passerby
    aimless-passerby reblogged this · 6 months ago
  • chibikkoinabox
    chibikkoinabox reblogged this · 6 months ago
  • flaminggayflamingo
    flaminggayflamingo reblogged this · 6 months ago
  • majorreblog
    majorreblog reblogged this · 6 months ago
  • artking-4
    artking-4 reblogged this · 7 months ago
donutdomain - 🍓Helpful Reblogs🍓
🍓Helpful Reblogs🍓

I just reblog fun facts/tipsScience, nature, geology facts etc! + art & writing tips!

67 posts

Explore Tumblr Blog
Search Through Tumblr Tags