Cornwall, 2017

Cornwall, 2017

cornwall, 2017

More Posts from Doctarjaferson and Others

5 months ago
The hashtag #GlobalSelfie is overlaid on the "Blue Marble" image of Earth -- the first image from space that shows the entire planet. Africa, Antarctica, and the deep blue ocean are visible beneath swirling white clouds. Credit: NASA

For Earth Day, we’re inviting you to take a moment to celebrate our wonderful water world, Earth. As far as we know, our Blue Marble is the only place in the universe with life, and that life depends on water. Snap a photo of yourself outside and tag it #GlobalSelfie – bonus points if your selfie features your favorite body of water! http://go.nasa.gov/3xFt0H0

Make sure to follow us on Tumblr for your regular dose of space!

4 years ago
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything
My Masterpost | My Studygram | Ask Me Anything

my masterpost | my studygram | ask me anything

[click images for high quality]

[transcript under the cut]

Other advice posts that may be of interest:

How To Study When You Really Don’t Want To

Active Revision Techniques

How To Do Uni Readings

How to Revise BIG Subjects

Keep reading

4 years ago
4 years ago
Nicolas Geiser - Almost, 2015, Stylo Sur Papier, 29,7 X 21 Cm

Nicolas Geiser - Almost, 2015, stylo sur papier, 29,7 x 21 cm

4 years ago

https://vm.tiktok.com/ZMJGUe2pU/

11 months ago
XXX

XXX

4 years ago

What’s Inside a ‘Dead’ Star?

Matter makes up all the stuff we can see in the universe, from pencils to people to planets. But there’s still a lot we don’t understand about it! For example: How does matter work when it’s about to become a black hole? We can’t learn anything about matter after it becomes a black hole, because it’s hidden behind the event horizon, the point of no return. So we turn to something we can study – the incredibly dense matter inside a neutron star, the leftover of an exploded massive star that wasn’t quite big enough to turn into a black hole.

What’s Inside A ‘Dead’ Star?

Our Neutron star Interior Composition Explorer, or NICER, is an X-ray telescope perched on the International Space Station. NICER was designed to study and measure the sizes and masses of neutron stars to help us learn more about what might be going on in their mysterious cores.

What’s Inside A ‘Dead’ Star?

When a star many times the mass of our Sun runs out of fuel, it collapses under its own weight and then bursts into a supernova. What’s left behind depends on the star’s initial mass. Heavier stars (around 25 times the Sun’s mass or more) leave behind black holes. Lighter ones (between about eight and 25 times the Sun’s mass) leave behind neutron stars.

What’s Inside A ‘Dead’ Star?

Neutron stars pack more mass than the Sun into a sphere about as wide as New York City’s Manhattan Island is long. Just one teaspoon of neutron star matter would weigh as much as Mount Everest, the highest mountain on Earth!

What’s Inside A ‘Dead’ Star?

These objects have a lot of cool physics going on. They can spin faster than blender blades, and they have powerful magnetic fields. In fact, neutron stars are the strongest magnets in the universe! The magnetic fields can rip particles off the star’s surface and then smack them down on another part of the star. The constant bombardment creates hot spots at the magnetic poles. When the star rotates, the hot spots swing in and out of our view like the beams of a lighthouse.

What’s Inside A ‘Dead’ Star?

Neutron stars are so dense that they warp nearby space-time, like a bowling ball resting on a trampoline. The warping effect is so strong that it can redirect light from the star’s far side into our view. This has the odd effect of making the star look bigger than it really is!

What’s Inside A ‘Dead’ Star?

NICER uses all the cool physics happening on and around neutron stars to learn more about what’s happening inside the star, where matter lingers on the threshold of becoming a black hole. (We should mention that NICER also studies black holes!)

What’s Inside A ‘Dead’ Star?

Scientists think neutron stars are layered a bit like a golf ball. At the surface, there’s a really thin (just a couple centimeters high) atmosphere of hydrogen or helium. In the outer core, atoms have broken down into their building blocks – protons, neutrons, and electrons – and the immense pressure has squished most of the protons and electrons together to form a sea of mostly neutrons.

But what’s going on in the inner core? Physicists have lots of theories. In some traditional models, scientists suggested the stars were neutrons all the way down. Others proposed that neutrons break down into their own building blocks, called quarks. And then some suggest that those quarks could recombine to form new types of particles that aren’t neutrons!

What’s Inside A ‘Dead’ Star?

NICER is helping us figure things out by measuring the sizes and masses of neutron stars. Scientists use those numbers to calculate the stars’ density, which tells us how squeezable matter is!

Let’s say you have what scientists think of as a typical neutron star, one weighing about 1.4 times the Sun’s mass. If you measure the size of the star, and it’s big, then that might mean it contains more whole neutrons. If instead it’s small, then that might mean the neutrons have broken down into quarks. The tinier pieces can be packed together more tightly.

What’s Inside A ‘Dead’ Star?

NICER has now measured the sizes of two neutron stars, called PSR J0030+0451 and PSR J0740+6620, or J0030 and J0740 for short.

J0030 is about 1.4 times the Sun’s mass and 16 miles across. (It also taught us that neutron star hot spots might not always be where we thought.) J0740 is about 2.1 times the Sun’s mass and is also about 16 miles across. So J0740 has about 50% more mass than J0030 but is about the same size! Which tells us that the matter in neutron stars is less squeezable than some scientists predicted. (Remember, some physicists suggest that the added mass would crush all the neutrons and make a smaller star.) And J0740’s mass and size together challenge models where the star is neutrons all the way down.

What’s Inside A ‘Dead’ Star?

So what’s in the heart of a neutron star? We’re still not sure. Scientists will have to use NICER’s observations to develop new models, perhaps where the cores of neutron stars contain a mix of both neutrons and weirder matter, like quarks. We’ll have to keep measuring neutron stars to learn more!

Keep up with other exciting announcements about our universe by following NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

  • tropicaltopia
    tropicaltopia reblogged this · 1 month ago
  • oscar-out-of-a-suitcase
    oscar-out-of-a-suitcase liked this · 1 month ago
  • natureatzadventures
    natureatzadventures reblogged this · 1 month ago
  • natureatzadventures
    natureatzadventures liked this · 1 month ago
  • schwarzebrandung
    schwarzebrandung liked this · 2 months ago
  • lilaccatholic
    lilaccatholic liked this · 2 months ago
  • aanbella
    aanbella reblogged this · 3 months ago
  • devastationjpg
    devastationjpg reblogged this · 3 months ago
  • cutie46
    cutie46 liked this · 4 months ago
  • slut4pussy1999
    slut4pussy1999 reblogged this · 4 months ago
  • slut4pussy1999
    slut4pussy1999 liked this · 4 months ago
  • kingqup
    kingqup liked this · 4 months ago
  • shmingleping
    shmingleping liked this · 4 months ago
  • jessiecharlotte6606
    jessiecharlotte6606 liked this · 4 months ago
  • olivervengeance
    olivervengeance liked this · 4 months ago
  • 1esknineteen
    1esknineteen liked this · 4 months ago
  • fortheequinox
    fortheequinox reblogged this · 6 months ago
  • freeedaa
    freeedaa reblogged this · 6 months ago
  • hopefulharddrive
    hopefulharddrive reblogged this · 6 months ago
  • technicolour-in-spring
    technicolour-in-spring reblogged this · 6 months ago
  • chantal-world-foreveryoung
    chantal-world-foreveryoung liked this · 6 months ago
  • nov-30
    nov-30 reblogged this · 6 months ago
  • deepbluesskies
    deepbluesskies reblogged this · 6 months ago
  • sovereign-seagrass
    sovereign-seagrass liked this · 7 months ago
  • clockworkfairy
    clockworkfairy liked this · 7 months ago
  • godzilla-en-mexico
    godzilla-en-mexico liked this · 7 months ago
  • stormsssandsaints
    stormsssandsaints reblogged this · 7 months ago
  • sherlieh
    sherlieh reblogged this · 7 months ago
  • honey-covered-wings
    honey-covered-wings liked this · 7 months ago
  • vastocean
    vastocean reblogged this · 7 months ago
  • kennyshrooms
    kennyshrooms reblogged this · 7 months ago
  • jurassicbouncehouse
    jurassicbouncehouse reblogged this · 7 months ago
  • mincefart
    mincefart liked this · 7 months ago
  • wyndlink
    wyndlink liked this · 7 months ago
  • fruitgems
    fruitgems liked this · 7 months ago
  • buca27
    buca27 reblogged this · 7 months ago
  • gimmeblood
    gimmeblood reblogged this · 7 months ago
  • gimmeblood
    gimmeblood liked this · 7 months ago
  • yuniko
    yuniko reblogged this · 7 months ago
  • yuniko
    yuniko liked this · 7 months ago
  • zero57x
    zero57x liked this · 7 months ago
  • il-mhegs
    il-mhegs reblogged this · 7 months ago
  • flabebabe
    flabebabe liked this · 7 months ago
doctarjaferson - Jaferson Doctar
Jaferson Doctar

The Secretary-General's son Gabriel Lougou Unicef.org 🇺🇳🇨🇫🇩🇰.

116 posts

Explore Tumblr Blog
Search Through Tumblr Tags