The NASA/ESA Hubble Space Telescope captures the iridescent tapestry of star birth in a neighbouring galaxy in this panoramic view of glowing gas, dark dust clouds, and young, hot stars.
Credit: NASA/ESA and the Hubble Heritage Team (AURA/STScI/HEIC)
NASA - Fermi Gamma-ray Space Telescope logo. July 12, 2018 For the first time ever, scientists using NASA’s Fermi Gamma-ray Space Telescope have found the source of a high-energy neutrino from outside our galaxy. This neutrino traveled 3.7 billion years at almost the speed of light before being detected on Earth. This is farther than any other neutrino whose origin scientists can identify. High-energy neutrinos are hard-to-catch particles that scientists think are created by the most powerful events in the cosmos, such as galaxy mergers and material falling onto supermassive black holes. They travel at speeds just shy of the speed of light and rarely interact with other matter, allowing them to travel unimpeded across distances of billions of light-years.
Image above: NASA’s Fermi (top left) has achieved a new first—identifying a monster black hole in a far-off galaxy as the source of a high-energy neutrino seen by the IceCube Neutrino Observatory (sensor strings, bottom). Image Credits: NASA/Fermi and Aurore Simonnet, Sonoma State University. The neutrino was discovered by an international team of scientists using the National Science Foundation’s IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station. Fermi found the source of the neutrino by tracing its path back to a blast of gamma-ray light from a distant supermassive black hole in the constellation Orion. “Again, Fermi has helped make another giant leap in a growing field we call multimessenger astronomy,” said Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington. “Neutrinos and gravitational waves deliver new kinds of information about the most extreme environments in the universe. But to best understand what they’re telling us, we need to connect them to the ‘messenger’ astronomers know best—light.” Scientists study neutrinos, as well as cosmic rays and gamma rays, to understand what is going on in turbulent cosmic environments such as supernovas, black holes and stars. Neutrinos show the complex processes that occur inside the environment, and cosmic rays show the force and speed of violent activity. But, scientists rely on gamma rays, the most energetic form of light, to brightly flag what cosmic source is producing these neutrinos and cosmic rays. “The most extreme cosmic explosions produce gravitational waves, and the most extreme cosmic accelerators produce high-energy neutrinos and cosmic rays,” says Regina Caputo of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the analysis coordinator for the Fermi Large Area Telescope Collaboration. “Through Fermi, gamma rays are providing a bridge to each of these new cosmic signals.” The discovery is the subject of two papers published Thursday in the journal Science. The source identification paper also includes important follow-up observations by the Major Atmospheric Gamma Imaging Cherenkov Telescopes and additional data from NASA’s Neil Gehrels Swift Observatory and many other facilities.
Image above: The discovery of a high-energy neutrino on September 22, 2017, sent astronomers on a chase to locate its source—a supermassive black hole in a distant galaxy. Image Credits: NASA’s Goddard Space Flight Center. On Sept. 22, 2017, scientists using IceCube detected signs of a neutrino striking the Antarctic ice with energy of about 300 trillion electron volts—more than 45 times the energy achievable in the most powerful particle accelerator on Earth. This high energy strongly suggested that the neutrino had to be from beyond our solar system. Backtracking the path through IceCube indicated where in the sky the neutrino came from, and automated alerts notified astronomers around the globe to search this region for flares or outbursts that could be associated with the event. Data from Fermi’s Large Area Telescope revealed enhanced gamma-ray emission from a well-known active galaxy at the time the neutrino arrived. This is a type of active galaxy called a blazar, with a supermassive black hole with millions to billions of times the Sun’s mass that blasts jets of particles outward in opposite directions at nearly the speed of light. Blazars are especially bright and active because one of these jets happens to point almost directly toward Earth.
Image above: Fermi-detected gamma rays from TXS 0506+056 are shown as expanding circles. Their maximum size, color—from white (low) to magenta (high)—and associated tone indicate the energy of each ray. Image Credits: NASA/DOE/Fermi LAT Collab. Fermi scientist Yasuyuki Tanaka at Hiroshima University in Japan was the first to associate the neutrino event with the blazar designated TXS 0506+056 (TXS 0506 for short). “Fermi’s LAT monitors the entire sky in gamma rays and keeps tabs on the activity of some 2,000 blazars, yet TXS 0506 really stood out,” said Sara Buson, a NASA Postdoctoral Fellow at Goddard who performed the data analysis with Anna Franckowiak, a scientist at the Deutsches Elektronen-Synchrotron research center in Zeuthen, Germany. “This blazar is located near the center of the sky position determined by IceCube and, at the time of the neutrino detection, was the most active Fermi had seen it in a decade.”
Visualizing Gamma Rays From Blazar TXS 0506+056
Video above: Fermi-detected gamma rays from TXS 0506+056 are shown as expanding circles. Their maximum size, color—from white (low) to magenta (high)—and associated tone indicate the energy of each ray. The first sequence shows typical emission; the second shows the 2017 flare leading to the neutrino detection. Video Credits: NASA/DOE/Fermi LAT Collab., Matt Russo and Andrew Santaguida/SYSTEM Sounds. NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States. The NASA Postdoctoral Fellow program is administered by Universities Space Research Association under contract with NASA. For more about NASA’s Fermi mission, visit: https://www.nasa.gov/fermi Fermi Gamma-Ray Space Telescope: http://www.nasa.gov/mission_pages/GLAST/main/index.html Related links: The source identification paper: http://science.sciencemag.org/cgi/doi/10.1126/science.aat1378 Major Atmospheric Gamma Imaging Cherenkov Telescopes: https://magic.mpp.mpg.de/ NASA’s Neil Gehrels Swift Observatory: https://www.nasa.gov/mission_pages/swift/main Deutsches Elektronen-Synchrotron: http://www.desy.de/index_eng.html Images (mentioned), Video (mentioned), Text, Credits: NASA/Felicia Chou/Sean Potter/GSFC/Dewayne Washington. Greetings, Orbiter.ch Full article
October is the time of year for the Orionids Meteor Shower! Pictured here, over two dozen meteors were caught in successively added exposures last October in Inner Mongolia. The featured image shows multiple meteor streaks that can all be connected to a single small region on the sky called the radiant, here visible just above and to the left of the belt of Orion. The Orionids meteors started as sand sized bits expelled from Comet Halley during one of its trips to the inner Solar System. Comet Halley is actually responsible for two known meteor showers, the other known as the Eta Aquarids and visible every May.
Next month, the Leonids Meteor Shower from Comet Tempel-Tuttle should also result in some bright meteor streaks.
Image Credit & Copyright: Yin Hao
Today, June 30 is International Asteroid Day. Here are some things to know about our fascinating space rubble.
Asteroids—named by British astronomer William Herschel from the Greek expression meaning “star-like"—are rocky, airless worlds that are too small to be called planets. But what they might lack in size they certainly make up for in number: An estimated 1.1 to 1.9 million asteroids larger than 1 kilometer are in the Main Belt between the orbits of Mars and Jupiter. And there are millions more that are smaller in size. Asteroids range in size from Vesta—the largest at about 329 miles (529 kilometers) wide—to bodies that are just a few feet across.
Asteroids are generally categorized into three types: carbon-rich, silicate, or metallic, or some combination of the three. Why the different types? It all comes down to how far from the sun they formed. Some experienced high temperatures and partly melted, with iron sinking to the center and volcanic lava forced to the surface. The asteroid Vesta is one example we know of today.
If all of the asteroids were combined into a ball, they would still be much smaller than the Earth’s moon.
In 1801, Giuseppe Piazzi discovered the first and then-largest asteroid, Ceres, orbiting between Mars and Jupiter. Ceres is so large that it encompasses about one-fourth of the estimated total mass of all the asteroids in the asteroid belt. In 2006, its classification changed from asteroid to as a dwarf planet.
NASA’s Psyche mission will launch in 2022 to explore an all-metal asteroid—what could be the core of an early planet—for the very first time. And in October 2021, the Lucy mission will be the first to visit Jupiter’s swarms of Trojan asteroids.
The term ‘near’ in near-Earth asteroid is actually a misnomer; most of these bodies do not come close to Earth at all. By definition, a near-Earth asteroid is an asteroid that comes within 28 million miles (44 million km) of Earth’s orbit. As of June 19, 2017, there are 16,209 known near-Earth asteroids, with 1,803 classified as potentially hazardous asteroids (those that could someday pose a threat to Earth).
About once a year, a car-sized asteroid hits Earth’s atmosphere, creates an impressive fireball, and burns up before reaching the surface.
Ground-based observatories and facilities such as Pan-STARRS, the Catalina Sky Survey, and ATLAS are constantly on the hunt to detect near-Earth asteroids. NASA also has a small infrared observatory in orbit about the Earth: NEOWISE. In addition to detecting asteroids and comets, NEOWISE also characterizes these small bodies.
Roughly one-sixth of the asteroid population have a small companion moon (some even have two moons). The first discovery of an asteroid-moon system was of asteroid Ida and its moon Dactyl in 1993.
Several NASA space missions have flown to and observed asteroids. The NEAR Shoemaker mission landed on asteroid Eros in 2001 and NASA’s Dawn mission was the first mission to orbit an asteroid in 2011. In 2005, the Japanese spacecraft Hayabusa landed on asteroid Itokawa. Currently, NASA’s OSIRIS-REx is en route to a near-Earth asteroid called Bennu; it will bring a small sample back to Earth for study.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NGC 6960: The Witchs Broom Nebula : Ten thousand years ago, before the dawn of recorded human history, a new light would have suddenly have appeared in the night sky and faded after a few weeks. Today we know this light was from a supernova, or exploding star, and record the expanding debris cloud as the Veil Nebula, a supernova remnant. This sharp telescopic view is centered on a western segment of the Veil Nebula cataloged as NGC 6960 but less formally known as the Witch’s Broom Nebula. Blasted out in the cataclysmic explosion, the interstellar shock wave plows through space sweeping up and exciting interstellar material. Imaged with narrow band filters, the glowing filaments are like long ripples in a sheet seen almost edge on, remarkably well separated into atomic hydrogen (red) and oxygen (blue-green) gas. The complete supernova remnant lies about 1400 light-years away towards the constellation Cygnus. This Witch’s Broom actually spans about 35 light-years. The bright star in the frame is 52 Cygni, visible with the unaided eye from a dark location but unrelated to the ancient supernova remnant. via NASA
💌
It’s been a really long time since I came on tumblr, but I started thinking a bit about how difficult year 13 was for me and what I could have done differently. they’re lengthy but there’s a lot to be said!!
These are some things that helped me when I was studying with depression - I have to say these don’t always help, and nothing will replace getting medical help. These just helped me take each day as it came, so I hope they’re of some use!
Please, please, please think of your health and really take care of yourself whilst studying and even more so in exam season.
⭐️⭐️⭐️⭐️ lots of love
Welcome class!
Here is a lesson about the Kugelblitz!
https://curiosity.com/topics/kugelblitz-the-theoretical-black-hole-made-of-light-curiosity/
Orion’s Belt Rises Through the Atmosphere (desktop/laptop) Click the image to download the correct size for your desktop or laptop in high resolution
This is the moment of today’s Soyuz rocket failure. It happened as the 4 side boosters were being jettisoned. Very glad the crew is safely back on the ground. (at Baikonur Cosmodrome) https://www.instagram.com/p/BozMRz0Hm2Y/?utm_source=ig_tumblr_share&igshid=168pfhpjc77cm
Spiral Galaxy NGC253 and Globular Cluster NGC288
by Eddie Trimarchi