Float On: Hey Sometimes Shit Happens But Life Goes On Yaay :D

Float On: Hey sometimes shit happens but life goes on yaay :D

Dashboard: Things may suck right now but at least not everything sucks :D

Lampshades On Fire: We're all gonna fucking die and there's nothing the human race can do about it

More Posts from Astrosciencechick and Others

6 years ago
The Highly Distorted Supernova Remnant Shown In This Image May Contain The Most Recent Black Hole Formed

The highly distorted supernova remnant shown in this image may contain the most recent black hole formed in the Milky Way galaxy. The image combines X-rays from NASA’s Chandra X-ray Observatory in blue and green, radio data from the NSF’s Very Large Array in pink, and infrared data from Caltech’s Palomar Observatory in yellow.

Credits: X-ray: NASA/CXC/MIT/L.Lopez et al; Infrared: Palomar; Radio: NSF/NRAO/VLA

6 years ago

Interesting facts about stars

Stars are giant, luminous spheres of plasma. There are billions of them — including our own sun — in the Milky Way Galaxy. And there are billions of galaxies in the universe. So far, we have learned that hundreds also have planets orbiting them.

1. Stars are made of the same stuff

image

All stars begin from clouds of cold molecular hydrogen that gravitationally collapse. As they cloud collapses, it fragments into many pieces that will go on to form individual stars. The material collects into a ball that continues to collapse under its own gravity until it can ignite nuclear fusion at its core. This initial gas was formed during the Big Bang, and is always about 74% hydrogen and 25% helium. Over time, stars convert some of their hydrogen into helium. That’s why our Sun’s ratio is more like 70% hydrogen and 29% helium. But all stars start out with ¾ hydrogen and ¼ helium, with other trace elements.

2. Most stars are red dwarfs

image

If you could collect all the stars together and put them in piles, the biggest pile, by far, would be the red dwarfs. These are stars with less than 50% the mass of the Sun. Red dwarfs can even be as small as 7.5% the mass of the Sun. Below that point, the star doesn’t have the gravitational pressure to raise the temperature inside its core to begin nuclear fusion. Those are called brown dwarfs, or failed stars. Red dwarfs burn with less than 1/10,000th the energy of the Sun, and can sip away at their fuel for 10 trillion years before running out of hydrogen.

3. Mass = temperature = color

image

The color of stars can range from red to white to blue. Red is the coolest color; that’s a star with less than 3,500 Kelvin. Stars like our Sun are yellowish white and average around 6,000 Kelvin. The hottest stars are blue, which corresponds to surface temperatures above 12,000 Kelvin. So the temperature and color of a star are connected. Mass defines the temperature of a star. The more mass you have, the larger the star’s core is going to be, and the more nuclear fusion can be done at its core. This means that more energy reaches the surface of the star and increases its temperature. There’s a tricky exception to this: red giants. A typical red giant star can have the mass of our Sun, and would have been a white star all of its life. But as it nears the end of its life it increases in luminosity by a factor of 1000, and so it seems abnormally bright. But a blue giant star is just big, massive and hot.

4. Most stars come in multiples

image

It might look like all the stars are out there, all by themselves, but many come in pairs. These are binary stars, where two stars orbit a common center of gravity. And there are other systems out there with 3, 4 and even more stars. Just think of the beautiful sunrises you’d experience waking up on a world with 4 stars around it.

5. The biggest stars would engulf Saturn

image

Speaking of red giants, or in this case, red supergiants, there are some monster stars out there that really make our Sun look small. A familiar red supergiant is the star Betelgeuse in the constellation Orion. It has about 20 times the mass of the Sun, but it’s 1,000 times larger. But that’s nothing. The largest known star is the monster UY Scuti.  It is a current and leading candidate for being the largest known star by radius and is also one of the most luminous of its kind. It has an estimated radius of 1,708 solar radii (1.188×109 kilometres; 7.94 astronomical units); thus a volume nearly 5 billion times that of the Sun.

6. There are many, many stars

image

Quick, how many stars are there in the Milky Way. You might be surprised to know that there are 200-400 billion stars in our galaxy. Each one is a separate island in space, perhaps with planets, and some may even have life.

7. The Sun is the closest star

image

Okay, this one you should know, but it’s pretty amazing to think that our own Sun, located a mere 150 million km away is average example of all the stars in the Universe. Our own Sun is classified as a G2 yellow dwarf star in the main sequence phase of its life. The Sun has been happily converting hydrogen into helium at its core for 4.5 billion years, and will likely continue doing so for another 7+ billion years. When the Sun runs out of fuel, it will become a red giant, bloating up many times its current size. As it expands, the Sun will consume Mercury, Venus and probably even Earth. 

8. The biggest stars die early

image

Small stars like red dwarfs can live for trillions of years. But hypergiant stars, die early, because they burn their fuel quickly and become supernovae. On average, they live only a few tens of millions of years or less.

9. Failed stars

image

Brown dwarfs are substellar objects that occupy the mass range between the heaviest gas giant planets and the lightest stars, of approximately 13 to 75–80 Jupiter masses (MJ). Below this range are the sub-brown dwarfs, and above it are the lightest red dwarfs (M9 V). Unlike the stars in the main-sequence, brown dwarfs are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) to helium in their cores.

10. Sirius: The Brightest Star in the Night Sky

image

Sirius is a star system and the brightest star in the Earth’s night sky. With a visual apparent magnitude of −1.46, it is almost twice as bright as Canopus, the next brightest star. The system has the Bayer designation Alpha Canis Majoris (α CMa). What the naked eye perceives as a single star is a binary star system, consisting of a white main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, called Sirius B. 

To know more click the links: white dwarf, supernova, +stars, pulsars

sources: wikipedia and universetoday.com

image credits: NASA/JPL, Morgan Keenan, ESO, Philip Park / CC BY-SA 3.0

6 years ago

This year’s winners of Nobel Prize for Physics includes a woman! 🎉🎊

Her name is Donna Strickland. Together with Arthur Ashkin, and Gérard Mourou, they are awarded the Nobel Prize “for their groundbreaking inventions in the field of laser physics” which help open up doors for potential research in biomedical physics.

[The announcement comes one day after a senior scientist with Cern, the academic home to a number of Nobel prize winners, was suspended for saying that physics was invented and built by men.

“We need to celebrate women physicists because we’re out there. I’m honored to be one of those women,” Strickland said in a news conference following the announcement in Stockholm.

Speaking about being the third woman to ever win the award, she said she thought there might have been more, adding: “Hopefully in time it will start to move forward at a faster rate.”]

Source

This Year’s Winners Of Nobel Prize For Physics Includes A Woman! 🎉🎊
6 years ago

I love these comics! Thanks so much to @cosmicfunnies for doing an asteroid comic this week! 😍

Starry Greetings!
Starry Greetings!
Starry Greetings!
Starry Greetings!
Starry Greetings!
Starry Greetings!
Starry Greetings!
Starry Greetings!

Starry Greetings!

Here is a comic on Asteroids!

https://www.space.com/51-asteroids-formation-discovery-and-exploration.html

6 years ago

NASA’s Fermi Traces Source of Cosmic Neutrino to Monster Black Hole

NASA - Fermi Gamma-ray Space Telescope logo. July 12, 2018 For the first time ever, scientists using NASA’s Fermi Gamma-ray Space Telescope have found the source of a high-energy neutrino from outside our galaxy. This neutrino traveled 3.7 billion years at almost the speed of light before being detected on Earth. This is farther than any other neutrino whose origin scientists can identify. High-energy neutrinos are hard-to-catch particles that scientists think are created by the most powerful events in the cosmos, such as galaxy mergers and material falling onto supermassive black holes. They travel at speeds just shy of the speed of light and rarely interact with other matter, allowing them to travel unimpeded across distances of billions of light-years.

Image above: NASA’s Fermi (top left) has achieved a new first—identifying a monster black hole in a far-off galaxy as the source of a high-energy neutrino seen by the IceCube Neutrino Observatory (sensor strings, bottom). Image Credits: NASA/Fermi and Aurore Simonnet, Sonoma State University. The neutrino was discovered by an international team of scientists using the National Science Foundation’s IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station. Fermi found the source of the neutrino by tracing its path back to a blast of gamma-ray light from a distant supermassive black hole in the constellation Orion. “Again, Fermi has helped make another giant leap in a growing field we call multimessenger astronomy,” said Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington. “Neutrinos and gravitational waves deliver new kinds of information about the most extreme environments in the universe. But to best understand what they’re telling us, we need to connect them to the ‘messenger’ astronomers know best—light.” Scientists study neutrinos, as well as cosmic rays and gamma rays, to understand what is going on in turbulent cosmic environments such as supernovas, black holes and stars. Neutrinos show the complex processes that occur inside the environment, and cosmic rays show the force and speed of violent activity. But, scientists rely on gamma rays, the most energetic form of light, to brightly flag what cosmic source is producing these neutrinos and cosmic rays. “The most extreme cosmic explosions produce gravitational waves, and the most extreme cosmic accelerators produce high-energy neutrinos and cosmic rays,” says Regina Caputo of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the analysis coordinator for the Fermi Large Area Telescope Collaboration. “Through Fermi, gamma rays are providing a bridge to each of these new cosmic signals.” The discovery is the subject of two papers published Thursday in the journal Science. The source identification paper also includes important follow-up observations by the Major Atmospheric Gamma Imaging Cherenkov Telescopes and additional data from NASA’s Neil Gehrels Swift Observatory and many other facilities.

Image above: The discovery of a high-energy neutrino on September 22, 2017, sent astronomers on a chase to locate its source—a supermassive black hole in a distant galaxy. Image Credits: NASA’s Goddard Space Flight Center. On Sept. 22, 2017, scientists using IceCube detected signs of a neutrino striking the Antarctic ice with energy of about 300 trillion electron volts—more than 45 times the energy achievable in the most powerful particle accelerator on Earth. This high energy strongly suggested that the neutrino had to be from beyond our solar system. Backtracking the path through IceCube indicated where in the sky the neutrino came from, and automated alerts notified astronomers around the globe to search this region for flares or outbursts that could be associated with the event. Data from Fermi’s Large Area Telescope revealed enhanced gamma-ray emission from a well-known active galaxy at the time the neutrino arrived. This is a type of active galaxy called a blazar, with a supermassive black hole with millions to billions of times the Sun’s mass that blasts jets of particles outward in opposite directions at nearly the speed of light. Blazars are especially bright and active because one of these jets happens to point almost directly toward Earth.

Image above: Fermi-detected gamma rays from TXS 0506+056 are shown as expanding circles. Their maximum size, color—from white (low) to magenta (high)—and associated tone indicate the energy of each ray. Image Credits: NASA/DOE/Fermi LAT Collab. Fermi scientist Yasuyuki Tanaka at Hiroshima University in Japan was the first to associate the neutrino event with the blazar designated TXS 0506+056 (TXS 0506 for short). “Fermi’s LAT monitors the entire sky in gamma rays and keeps tabs on the activity of some 2,000 blazars, yet TXS 0506 really stood out,” said Sara Buson, a NASA Postdoctoral Fellow at Goddard who performed the data analysis with Anna Franckowiak, a scientist at the Deutsches Elektronen-Synchrotron research center in Zeuthen, Germany. “This blazar is located near the center of the sky position determined by IceCube and, at the time of the neutrino detection, was the most active Fermi had seen it in a decade.”

Visualizing Gamma Rays From Blazar TXS 0506+056

Video above: Fermi-detected gamma rays from TXS 0506+056 are shown as expanding circles. Their maximum size, color—from white (low) to magenta (high)—and associated tone indicate the energy of each ray. The first sequence shows typical emission; the second shows the 2017 flare leading to the neutrino detection. Video Credits: NASA/DOE/Fermi LAT Collab., Matt Russo and Andrew Santaguida/SYSTEM Sounds. NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States. The NASA Postdoctoral Fellow program is administered by Universities Space Research Association under contract with NASA. For more about NASA’s Fermi mission, visit: https://www.nasa.gov/fermi Fermi Gamma-Ray Space Telescope: http://www.nasa.gov/mission_pages/GLAST/main/index.html Related links: The source identification paper: http://science.sciencemag.org/cgi/doi/10.1126/science.aat1378 Major Atmospheric Gamma Imaging Cherenkov Telescopes: https://magic.mpp.mpg.de/ NASA’s Neil Gehrels Swift Observatory: https://www.nasa.gov/mission_pages/swift/main Deutsches Elektronen-Synchrotron: http://www.desy.de/index_eng.html Images (mentioned), Video (mentioned), Text, Credits: NASA/Felicia Chou/Sean Potter/GSFC/Dewayne Washington. Greetings, Orbiter.ch Full article

6 years ago
What Friday's Extra-Long Lunar Eclipse Can Tell Us About The Earth
The moon will turn orange or even red. And the eclipse — expected to be the longest this century — will be best to see in eastern and southern Africa, the Middle East, eastern Europe and south Asia.
6 years ago
R Leporis: A Vampire’s Star Via NASA Https://ift.tt/2Rt7kU7

R Leporis: A Vampire’s Star via NASA https://ift.tt/2Rt7kU7

6 years ago

Why Won’t Our Parker Solar Probe Melt?

This summer, our Parker Solar Probe will launch to travel closer to the Sun than any mission before it, right into the Sun’s outer atmosphere, the corona.

image

The environment in the corona is unimaginably hot: The spacecraft will travel through material with temperatures greater than 3 million degrees Fahrenheit. 

So…why won’t it melt? 

The Difference Between Heat and Temperature

Parker Solar Probe was designed from the ground up to keep its instruments safe and cool, but the nature of the corona itself also helps. The key lies in the difference between heat and temperature.

Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is an incredibly thin and tenuous part of the Sun, and there are very few particles there to transfer energy – so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).

image

It’s like the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don’t try this at home!). In the air of the oven, your hand doesn’t get nearly as hot as it would in the much denser water of the boiling pot. 

So even though Parker Solar Probe travels through a region with temperatures of several million degrees, the surface of its heat shield will reach only about 2,500 F.

image

The Heat Shield

Of course, thousands of degrees Fahrenheit is still way too hot for scientific instruments. (For comparison, lava from volcano eruptions can be anywhere between 1,300 to 2,200 F.) 

To withstand that heat, Parker Solar Probe is outfitted with a cutting-edge heat shield, called the Thermal Protection System. This heat shield is made of a carbon composite foam sandwiched between two carbon plates. The Sun-facing side is covered with a specially-developed white ceramic coating, applied as a plasma spray, to reflect as much heat as possible.

image

The heat shield is so good at its job that even though the Sun-facing side of the shield will be at 2,500 F, the instruments in its shadow will remain at a balmy 85 F.

Parker Solar Probe Keeps its Cool

Several other designs on the spacecraft help Parker Solar Probe beat the heat. 

Parker Solar Probe is not only studying the Sun – it’s also powered by it. But even though most of the surface area of its solar arrays can be retracted behind the heat shield, even that small exposed segment would quickly make them overheat while at the Sun.  

image

To keep things cool, Parker Solar Probe circulates a single gallon of water through its solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator. 

It’s also important for Parker Solar Probe to be able to think on its feet, since it takes about eight minutes for information to travel between Earth and the Sun. If we had to control the spacecraft from Earth, by the time we knew something went wrong, it would be too late to fix it. 

So Parker Solar Probe is smart: Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors – and the rest of the instruments – safely protected behind the heat shield.

image

Over the course of its seven-year mission, Parker Solar Probe will make 24 orbits of our star. On each close approach to the Sun, it will sample the solar wind, study the Sun’s corona, and provide unprecedentedly close up observations from around our star – and armed with its slew of innovative technologies, we know it will keep its cool the whole time. 

Parker Solar Probe launches summer 2018 on its mission to study the Sun. Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10 years ago
I Want To Be Taking Notes. 

I want to be taking notes. 

(via Hometalk)

6 years ago
🎃👻🕷️  Black Widow In Space … Black Widow Nebula 🎃👻🕷️

🎃👻🕷️  Black Widow In Space … Black Widow Nebula 🎃👻🕷️

🎃 Part Of Spinning Blue Ball’s Five Days of Halloween!! 🎃

  • bactrimdmfg
    bactrimdmfg liked this · 1 year ago
  • osidius-el-enfatico
    osidius-el-enfatico reblogged this · 2 years ago
  • bonomovesinmysteriousways
    bonomovesinmysteriousways liked this · 2 years ago
  • trrashwalk
    trrashwalk reblogged this · 5 years ago
  • trrashwalk
    trrashwalk liked this · 5 years ago
  • disabledpaladin
    disabledpaladin liked this · 5 years ago
  • dinkwinkerdale
    dinkwinkerdale reblogged this · 5 years ago
  • oatplant
    oatplant reblogged this · 5 years ago
  • oatplant
    oatplant liked this · 5 years ago
  • konvoluted
    konvoluted reblogged this · 5 years ago
  • konvoluted
    konvoluted liked this · 5 years ago
  • narwhalnolan
    narwhalnolan liked this · 6 years ago
  • omgmandileigh
    omgmandileigh liked this · 6 years ago
  • a-boy-walks-home-alone-at-night
    a-boy-walks-home-alone-at-night liked this · 6 years ago
  • riderandspider
    riderandspider reblogged this · 6 years ago
  • shutupandquityourcrying
    shutupandquityourcrying liked this · 6 years ago
  • cymnema
    cymnema liked this · 6 years ago
  • eventually--darling
    eventually--darling liked this · 6 years ago
  • viciousbagel83
    viciousbagel83 reblogged this · 6 years ago
  • viciousbagel83
    viciousbagel83 liked this · 6 years ago
  • dumbloss-blog
    dumbloss-blog liked this · 6 years ago
  • jiyoungtrois
    jiyoungtrois liked this · 6 years ago
  • rubi-red-gem
    rubi-red-gem liked this · 6 years ago
  • 341two
    341two liked this · 6 years ago
  • gordianknotbondage
    gordianknotbondage liked this · 6 years ago
  • throuthelookingglass
    throuthelookingglass reblogged this · 6 years ago
  • audrey-jane
    audrey-jane reblogged this · 6 years ago
  • lesinvisibles7
    lesinvisibles7 liked this · 6 years ago
  • hella-dimples
    hella-dimples reblogged this · 6 years ago
  • hella-dimples
    hella-dimples liked this · 6 years ago
  • slothdive
    slothdive reblogged this · 6 years ago
  • oxymoroconic
    oxymoroconic liked this · 6 years ago
  • penumbra58
    penumbra58 liked this · 6 years ago
  • madlenne
    madlenne liked this · 6 years ago
  • reader-of-the-lost-ark
    reader-of-the-lost-ark reblogged this · 6 years ago
  • reader-of-the-lost-ark
    reader-of-the-lost-ark liked this · 6 years ago
  • riiiiiiiiiiiiiiiii
    riiiiiiiiiiiiiiiii liked this · 6 years ago
  • seraphielleh
    seraphielleh reblogged this · 6 years ago
  • russellx11-blog
    russellx11-blog liked this · 6 years ago

143 posts

Explore Tumblr Blog
Search Through Tumblr Tags